论文标题
贝叶斯逆不确定性量化物理模型参数的散布中子源第一目标站
Bayesian Inverse Uncertainty Quantification of the Physical Model Parameters for the Spallation Neutron Source First Target Station
论文作者
论文摘要
对于橡树岭国家实验室中的中子中子源的中子科学计划,汞泄漏目标的可靠性至关重要。我们在多项式混沌扩展替代模型的帮助下,使用贝叶斯框架进行贝叶斯框架进行了反向不确定性定量(UQ)研究。通过利用高保真结构力学模拟和实际测量的应变数据,逆UQ结果显示出最大的估计,平均值,平均值和标准偏差为$ 6.5 \ times 10^4 $($ 6.49 \ times 10^4 \ times 10^4 \ pm 2.39 \ pm 2.39 \ pm 2.39 \ pm 2.39 \ pm times 10^3 $)tensile cutoff cutoff cutoff cutoff thesholdold thesholdold,$ 1211 $1211.111111111111111111111111111111111成汞密度的kg/m $^3 $和$ 1850.4 $($ 1849.7 \ pm 5.3 $)m/s的汞速度。这些值不一定代表标称的汞物理特性,而是适合我们使用的应变数据和固体力学模型的值,并且可以通过三个原因来解释:计算机模型的局限性或所谓的模型不确定性,实验数据中的偏见和错误,以及汞熔炉损害的损坏,这也导致了汞行为的变化。因此,状态模型参数的方程试图补偿这些效果以提高数据的适应性。使用更新的参数值的汞目标模拟与参考参数相比,平均准确度达到88%的平均准确性,与参考参数相比增加了6%,有些传感器的平均值增加了,其中一些传感器的增加超过25%。通过更准确的模拟应变响应,组件疲劳分析可以利用全面的应变历史记录数据来评估目标容器的寿命更接近其实际极限,从而节省了巨大的目标成本。
The reliability of the mercury spallation target is mission-critical for the neutron science program of the spallation neutron source at the Oak Ridge National Laboratory. We present an inverse uncertainty quantification (UQ) study using the Bayesian framework for the mercury equation of state model parameters, with the assistance of polynomial chaos expansion surrogate models. By leveraging high-fidelity structural mechanics simulations and real measured strain data, the inverse UQ results reveal a maximum-a-posteriori estimate, mean, and standard deviation of $6.5\times 10^4$ ($6.49\times 10^4 \pm 2.39\times 10^3$) Pa for the tensile cutoff threshold, $12112.1$ ($12111.8 \pm 14.9$) kg/m$^3$ for the mercury density, and $1850.4$ ($1849.7 \pm 5.3$) m/s for the mercury speed of sound. These values do not necessarily represent the nominal mercury physical properties, but the ones that fit the strain data and the solid mechanics model we have used, and can be explained by three reasons: The limitations of the computer model or what is known as the model-form uncertainty, the biases and errors in the experimental data, and the mercury cavitation damage that also contributes to the change in mercury behavior. Consequently, the equation of state model parameters try to compensate for these effects to improve fitness to the data. The mercury target simulations using the updated parametric values result in an excellent agreement with 88% average accuracy compared to experimental data, 6% average increase compared to reference parameters, with some sensors experiencing an increase of more than 25%. With a more accurate simulated strain response, the component fatigue analysis can utilize the comprehensive strain history data to evaluate the target vessel's lifetime closer to its real limit, saving tremendous target costs.