论文标题

通过电流耗散加热太阳能球圈

Heating of the solar chromosphere through current dissipation

论文作者

Santos, J. M. da Silva, Danilovic, S., Leenaarts, J., Rodríguez, J. de la Cruz, Zhu, X., White, S. M., Vissers, G. J. M., Rempel, M.

论文摘要

太阳能球体被加热到高于辐射平衡所预测的高温。在磁场更强的活动区域中,这种过量的加热更大。我们旨在研究与Atacama大毫米/亚毫升阵列(ALMA)映射的太阳能区域中增强毫米(MM)亮度温度相关的磁性拓扑,并使用Spectropolarimetric co-cocservations使用1-m Swededish Solar TheScope(SST)。我们使用米尔恩 - 埃德丁顿倒置,非局部热力学平衡(非LTE)反演以及磁液静态外推以获得对温度,磁场和辐射能损失的三维分层的约束。我们将观测结果与磁流失动力学模拟的快照进行了比较,并使用贡献函数研究了3 mm的热连续体的形成。我们发现,上染色体上的加热速率提高了高达$ \ sim 5 \ rm \,kw \,m^{ - 2} $,其中小规模的新兴环与上上面的磁盖相互作用,从而导致电流板,如磁场外的外推所示。我们的估计值大约比规范值高两个因子,但是它们受ALMA空间分辨率的限制($ \ sim 1.2^{\ prime \ prime} $)。带3个亮度温度达到该区域的$ \ sim10^{4} \,$ k,从非LTE反转推论的横向磁场强度在染色体中的$ \ sim 500 \,$ g的顺序。我们能够定量地重现许多观察到的特征,包括数值模拟中的综合辐射损耗。我们得出的结论是,加热是由于当前床单中的耗散引起的。然而,模拟显示在通量出现区域中的复杂分层,其中不同的层可能对MM连续体的发射有显着贡献。

The solar chromosphere is heated to temperatures higher than predicted by radiative equilibrium. This excess heating is greater in active regions where the magnetic field is stronger. We aim to investigate the magnetic topology associated with an area of enhanced millimeter (mm) brightness temperatures in a solar active region mapped by the Atacama Large Millimeter/submillimeter Array (ALMA) using spectropolarimetric co-observations with the 1-m Swedish Solar Telescope (SST). We used Milne-Eddington inversions, nonlocal thermodynamic equilibrium (non-LTE) inversions, and a magnetohydrostatic extrapolation to obtain constraints on the three-dimensional stratification of temperature, magnetic field, and radiative energy losses. We compared the observations to a snapshot of a magnetohydrodynamics simulation and investigate the formation of the thermal continuum at 3 mm using contribution functions. We find enhanced heating rates in the upper chromosphere of up to $\sim 5\rm\,kW\,m^{-2}$, where small-scale emerging loops interact with the overlying magnetic canopy leading to current sheets as shown by the magnetic field extrapolation. Our estimates are about a factor of two higher than canonical values, but they are limited by the ALMA spatial resolution ($\sim 1.2^{\prime\prime}$). Band 3 brightness temperatures reach about $\sim10^{4}\,$K in the region, and the transverse magnetic field strength inferred from the non-LTE inversions is on the order of $\sim 500\,$G in the chromosphere. We are able to quantitatively reproduce many of the observed features, including the integrated radiative losses in our numerical simulation. We conclude that the heating is caused by dissipation in current sheets. However, the simulation shows a complex stratification in the flux emergence region where distinct layers may contribute significantly to the emission in the mm continuum.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源