论文标题

在失败的零强迫数量上的下限图

A Lower Bound on the Failed Zero Forcing Number of a Graph

论文作者

Ufferman, Eric, Swanson, Nicolas

论文摘要

给定图形$ g =(v,e)$和一组标记为填充的顶点,我们考虑一个称为零强迫的颜色变换规则。如果填充$ s $并应用了颜色更改规则的所有可能实例,则$ s $是零强制集,这会导致$ v $中的所有顶点。失败的零强迫集是一组并不是零强迫集的顶点。给定图形$ g $,失败的零强迫$ f(g)$是失败零强迫集的最大大小。一个开放的问题是,如果给出任何$ k $的$ \ ell $,以使所有至少$ \ ell $ dertices的图形都必须满足$ f(g)\ geq k $。我们通过证明$ n $ vertices的图$ g $肯定地回答了这个问题,$ f(g)\ geq \ lfloor \ frac \ frac {n-1} {2} {2} \ rfloor $。

Given a graph $G=(V,E)$ and a set of vertices marked as filled, we consider a color-change rule known as zero forcing. A set $S$ is a zero forcing set if filling $S$ and applying all possible instances of the color change rule causes all vertices in $V$ to be filled. A failed zero forcing set is a set of vertices that is not a zero forcing set. Given a graph $G$, the failed zero forcing number $F(G)$ is the maximum size of a failed zero forcing set. An open question was whether given any $k$ there is a an $\ell$ such that all graphs with at least $\ell$ vertices must satisfy $F(G)\geq k$. We answer this question affirmatively by proving that for a graph $G$ with $n$ vertices, $F(G)\geq \lfloor\frac{n-1}{2}\rfloor$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源