论文标题

五维超级效率部门的隐藏的kac-moody结构

Hidden Kac-Moody Structures in the Fermionic Sector of Five-Dimensional Supergravity

论文作者

Damour, Thibault, Spindel, Philippe

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We study the supersymmetric quantum dynamics of the cosmological models obtained by reducing $D=5$ supergravity to one timelike dimension. This consistent truncation has fourteen bosonic degrees of freedom, while the quantization of the homogeneous gravitino field leads to a $2^{16}$--dimensional fermionic Hilbert space. We construct a consistent quantization of the model in which the wave function of the Universe is a $2^{16}$--component spinor %\textcolor{red}{of Spin(24,8)} depending on fourteen continuous coordinates, which satisfies eight Dirac-like wave equations (supersymmetry constraints) and one Klein-Gordon-like equation (Hamiltonian constraint). The fermionic part of the quantum Hamiltonian is built from operators that generate a $2^{16}$-dimensional representation of the (infinite-dimensional) maximally compact sub-algebra $K(G_2^{++})$ of the rank-4 hyperbolic Kac--Moody algebra $G_2^{++}$. The (quartic-in-fermions) squared-mass term $\widehat μ^2$ entering the Klein-Gordon-like equation has several remarkable properties: (i) it commutes with the generators of $K(G_2^{++})$; and (ii) it is a quadratic polynomial in the fermion number $N_F \sim \overlineΨΨ$, and a symplectic fermion bilinear $C_F \sim ΨCΨ$. Some aspects of the structure of the solutions of our model are discussed, and notably the Kac-Moody meaning of the operators describing the reflection of the wave function on the fermion-dependent potential walls ("quantum fermionic Kac-Moody billiard").

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源