论文标题

使用Epsilon机器评估行星复杂性和潜在的不可知生物签名

Assessing Planetary Complexity and Potential Agnostic Biosignatures using Epsilon Machines

论文作者

Bartlett, Stuart, Li, Jiazheng, Gu, Lixiang, Sinapayen, Lana, Fan, Siteng, Natraj, Vijay, Jiang, Jonathan, Crisp, David, Yung, Yuk

论文摘要

我们提出了一种使用复杂性科学技术的技术来进行系外行星表征的新方法,并具有潜在的应用于生物签名检测。这种不可知论方法利用了从行星反映或发出的光的时间变化。我们使用一种称为Epsilon机器重建的技术来计算统计复杂性,这是时间序列数据的最小模型大小的度量。我们证明统计复杂性是对行星特征复杂性的有效度量。质量复杂性的增加水平与统计复杂性和香农熵的增加相关,表明我们的方法可以识别具有最富有动力的行星。我们还将地球时间序列与木星数据进行了比较,并发现对于所考虑的三个波长,地球的平均复杂性和熵率分别比木星高约50%和43%。大多数用于检测外星生命的方案都取决于生化特征和行星环境。但是,越来越多地认识到,外星生命可能与地球上的生命大不相同。在以下假设的是,生物圈的存在与可观察的行星复杂性之间存在相关性,我们的技术为其测量提供了一种不可知论和定量的方法。

We present a new approach to exoplanet characterisation using techniques from complexity science, with potential applications to biosignature detection. This agnostic method makes use of the temporal variability of light reflected or emitted from a planet. We use a technique known as epsilon machine reconstruction to compute the statistical complexity, a measure of the minimal model size for time series data. We demonstrate that statistical complexity is an effective measure of the complexity of planetary features. Increasing levels of qualitative planetary complexity correlate with increases in statistical complexity and Shannon entropy, demonstrating that our approach can identify planets with the richest dynamics. We also compare Earth time series with Jupiter data, and find that for the three wavelengths considered, Earth's average complexity and entropy rate are approximately 50% and 43% higher than Jupiter's, respectively. The majority of schemes for the detection of extraterrestrial life rely upon biochemical signatures and planetary context. However, it is increasingly recognised that extraterrestrial life could be very different to life on Earth. Under the hypothesis that there is a correlation between the presence of a biosphere and observable planetary complexity, our technique offers an agnostic and quantitative method for the measurement thereof.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源