论文标题
关于在$ \ mathbb {p}^3 $中的五重刺曲面上非ACM曲线的分类
On the classification of non-aCM curves on quintic hypersurfaces in $\mathbb{P}^3$
论文作者
论文摘要
在本文中,我们称尺寸为$ \ mathbb {p}^3 $ a曲线的尺寸一级。众所周知,算术属和ACM曲线$ d $ in $ \ mathbb {p}^3 $由$ h $ - vector计算出$ d $。但是,对于给定的曲线$ d $ in $ \ mathbb {p}^3 $,$ d $的两个不变性不告诉我们$ d $是否为acm。在本文中,我们在$ \ mathbb {p}^3 $中对曲线进行分类,这不是ACM。
In this paper, we call a sub-scheme of dimension one in $\mathbb{P}^3$ a curve. It is well known that the arithmetic genus and the degree of an aCM curve $D$ in $\mathbb{P}^3$ is computed by the $h$-vector of $D$. However, for a given curve $D$ in $\mathbb{P}^3$, the two invariants of $D$ do not tell us whether $D$ is aCM or not. In this paper, we give a classification of curves on a smooth quintic hypersurface in $\mathbb{P}^3$ which are not aCM.