论文标题

Aladdin:与成对对齐

Aladdin: Joint Atlas Building and Diffeomorphic Registration Learning with Pairwise Alignment

论文作者

Ding, Zhipeng, Niethammer, Marc

论文摘要

Atlas Building和图像注册是医学图像分析的重要任务。一旦构造了来自图像群体的一个或多个图像,通常(1)图像被扭曲成Atlas空间,以研究对象内或受试者间变化,或者(2)可能概率的图像被扭曲到图像空间中以分配解剖标记。地图集估计和非参数转换在计算上很昂贵,因为它们通常需要数值优化。此外,以前的地图集建筑物的方法通常定义模糊地图集和每个单独图像之间的相似性度量,这可能会导致对齐困难,因为模糊地图集并未表现出与单个图像相比的清晰解剖结构。这项工作使用卷积神经网络(CNN)探索,以共同预测地图集和固定速度场(SVF)参数化,以相对于地图集进行差异图像登记。我们的方法不需要仿射预注册,并利用成对的图像对准损失来提高注册精度。我们对OAI-ZIB数据集的3D膝关节磁共振图像(MRI)评估了模型。我们的结果表明,所提出的框架的性能比其他最先进的图像注册算法,允许端到端培训以及在测试时进行快速推断。

Atlas building and image registration are important tasks for medical image analysis. Once one or multiple atlases from an image population have been constructed, commonly (1) images are warped into an atlas space to study intra-subject or inter-subject variations or (2) a possibly probabilistic atlas is warped into image space to assign anatomical labels. Atlas estimation and nonparametric transformations are computationally expensive as they usually require numerical optimization. Additionally, previous approaches for atlas building often define similarity measures between a fuzzy atlas and each individual image, which may cause alignment difficulties because a fuzzy atlas does not exhibit clear anatomical structures in contrast to the individual images. This work explores using a convolutional neural network (CNN) to jointly predict the atlas and a stationary velocity field (SVF) parameterization for diffeomorphic image registration with respect to the atlas. Our approach does not require affine pre-registrations and utilizes pairwise image alignment losses to increase registration accuracy. We evaluate our model on 3D knee magnetic resonance images (MRI) from the OAI-ZIB dataset. Our results show that the proposed framework achieves better performance than other state-of-the-art image registration algorithms, allows for end-to-end training, and for fast inference at test time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源