论文标题
Nesterov加速改组梯度方法用于凸优化
Nesterov Accelerated Shuffling Gradient Method for Convex Optimization
论文作者
论文摘要
在本文中,我们提出了Nesterov加速改组梯度(NASG),这是一种用于凸有限和最小化问题的新算法。我们的方法将传统的Nesterov的加速动力与不同的改组抽样方案相结合。我们证明,我们的算法使用统一的改组方案提高了$ \ Mathcal {o}(1/t)$的速率,其中$ t $是时代的数量。该速率比凸状制度中的任何其他改组梯度方法要好。我们的收敛分析不需要对有界域或有界梯度条件的假设。对于随机洗牌方案,我们进一步改善了收敛性。使用某种初始条件时,我们表明我们的方法在解决方案的小邻居附近收敛得更快。数值模拟证明了我们的算法的效率。
In this paper, we propose Nesterov Accelerated Shuffling Gradient (NASG), a new algorithm for the convex finite-sum minimization problems. Our method integrates the traditional Nesterov's acceleration momentum with different shuffling sampling schemes. We show that our algorithm has an improved rate of $\mathcal{O}(1/T)$ using unified shuffling schemes, where $T$ is the number of epochs. This rate is better than that of any other shuffling gradient methods in convex regime. Our convergence analysis does not require an assumption on bounded domain or a bounded gradient condition. For randomized shuffling schemes, we improve the convergence bound further. When employing some initial condition, we show that our method converges faster near the small neighborhood of the solution. Numerical simulations demonstrate the efficiency of our algorithm.