论文标题
基于超导量子的硬件的量子近似优化算法的缩放
Scaling of the quantum approximate optimization algorithm on superconducting qubit based hardware
论文作者
论文摘要
量子计算机可以通过利用量子近似优化算法(QAOA)来提供良好的解决方案来组合优化问题。 QAOA通常以嘈杂硬件的算法表示。但是,硬件约束将其适用性限制为与Qubits的连接密切相匹配的问题实例。此外,QAOA必须超过经典求解器。在这里,我们调查了将密集问题映射到线性,网格和重赫克斯耦合图中的掉期策略。基于线路的交换策略最适合线性和二维网格耦合图。重赫克斯耦合图需要适应线交换策略。相比之下,三维网格耦合图受益于不同的互换策略。使用已知的熵参数,我们发现对密集问题的所需门保真度位于容易耐受阈值的深处。我们还提供了一种方法来推理QAOA的执行时间。最后,我们提出了一个QAOA QISKIT运行时程序,并使用针对QAOA优化的转板设置对基于云的量子计算机执行闭环优化。这项工作突出了一些改进的障碍,以使QAOA具有竞争力,例如门忠诚,门速度和所需的大量射击。 Qiskit运行时计划为我们提供了一种工具,可以在嘈杂的超导量子硬件上大规模调查此类问题。
Quantum computers may provide good solutions to combinatorial optimization problems by leveraging the Quantum Approximate Optimization Algorithm (QAOA). The QAOA is often presented as an algorithm for noisy hardware. However, hardware constraints limit its applicability to problem instances that closely match the connectivity of the qubits. Furthermore, the QAOA must outpace classical solvers. Here, we investigate swap strategies to map dense problems into linear, grid and heavy-hex coupling maps. A line-based swap strategy works best for linear and two-dimensional grid coupling maps. Heavy-hex coupling maps require an adaptation of the line swap strategy. By contrast, three-dimensional grid coupling maps benefit from a different swap strategy. Using known entropic arguments we find that the required gate fidelity for dense problems lies deep below the fault-tolerant threshold. We also provide a methodology to reason about the execution-time of QAOA. Finally, we present a QAOA Qiskit Runtime program and execute the closed-loop optimization on cloud-based quantum computers with transpiler settings optimized for QAOA. This work highlights some obstacles to improve to make QAOA competitive, such as gate fidelity, gate speed, and the large number of shots needed. The Qiskit Runtime program gives us a tool to investigate such issues at scale on noisy superconducting qubit hardware.