论文标题

非参数双重鲁棒测试,以实现连续治疗效果

A nonparametric doubly robust test for a continuous treatment effect

论文作者

Doss, Charles R., Weng, Guangwei, Wang, Lan, Moscovice, Ira, Chantarat, Tongtan

论文摘要

关于评估基于观察数据的治疗效果的重要性的绝大多数文献都局限于离散治疗。这些方法不适用于在许多重要应用中引起的连续处理推断。为了在评估连续处理时调整混杂因素,现有的推理方法通常依赖于处理效果曲线的治疗或使用(可能误指定的)参数模型。最近,肯尼迪等。 (2017年)提出了观察性研究中连续治疗效应的非参数双重稳定估计。但是,对连续治疗效果的推断是一个更困难的问题。据我们所知,在这种情况下,一种完全非参数的双重强大方法尚不可用。在本文中,我们开发了这种非参数双重鲁棒性程序,用于推断连续治疗效应曲线。使用经验过程技术来用于本地的U-和V-Processes,我们建立了测试统计量的渐近分布。此外,我们提出了一个野生的引导程序,以实践实施测试。我们通过模拟说明了新方法以及对构造数据集的研究,该数据集将护士人员配备时间对医院绩效的影响。我们在cran的R软件包DRDRTEST中实现了双重稳健的剂量响应测试。

The vast majority of literature on evaluating the significance of a treatment effect based on observational data has been confined to discrete treatments. These methods are not applicable to drawing inference for a continuous treatment, which arises in many important applications. To adjust for confounders when evaluating a continuous treatment, existing inference methods often rely on discretizing the treatment or using (possibly misspecified) parametric models for the effect curve. Recently, Kennedy et al. (2017) proposed nonparametric doubly robust estimation for a continuous treatment effect in observational studies. However, inference for the continuous treatment effect is a harder problem. To the best of our knowledge, a completely nonparametric doubly robust approach for inference in this setting is not yet available. We develop such a nonparametric doubly robust procedure in this paper for making inference on the continuous treatment effect curve. Using empirical process techniques for local U- and V-processes, we establish the test statistic's asymptotic distribution. Furthermore, we propose a wild bootstrap procedure for implementing the test in practice. We illustrate the new method via simulations and a study of a constructed dataset relating the effect of nurse staffing hours on hospital performance. We implement our doubly robust dose response test in the R package DRDRtest on CRAN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源