论文标题
最大纠缠的两分态状态的表征
A characterization of maximally entangled two-qubit states
论文作者
论文摘要
RANA的结果\ href {https://doi.org/10.1103/physreva.87.054301} {[\ pra {\ pra {\ bf87}(2013)054401]} $ [ - \ frac12,1] $。在本说明中,我们研究了一个两分量子状态的家族,其最小的部分转让状态为$ - \ frac12 $。对于两个小问题的系统,我们发现其部分转置状态的最小特征值是$ - \ frac12 $,并且仅当必须最大程度地纠缠于这种两分的状态时。但是,当基础空间的尺寸大于两个时,对于两个Qudit系统,这一结果总体上不能成立。
As already known by Rana's result \href{https://doi.org/10.1103/PhysRevA.87.054301}{[\pra {\bf87} (2013) 054301]}, all eigenvalues of any partial-transposed bipartite state fall within the closed interval $[-\frac12,1]$. In this note, we study a family of bipartite quantum states whose minimal eigenvalues of partial-transposed states being $-\frac12$. For a two-qubit system, we find that the minimal eigenvalue of its partial-transposed state is $-\frac12$ if and only if such two-qubit state must be maximally entangled. However this result does not hold in general for a two-qudit system when the dimensions of the underlying space are larger than two.