论文标题

详细说明单词问题,以免费的愿意产生的半群在完整的转换上

Elaborating the word problem for free idempotent-generated semigroups over the full transformation monoid

论文作者

Dolinka, Igor

论文摘要

在每个半群中,一个人都可以将部分代数(称为生物的套件)关联,该代数捕获了该半群体的同性基体结构的重要代数和几何特征。对于一个生物制定的$ \ MATHCAL {E} $,可以在$ \ Mathcal {e} $,$ \ Mathsf {ig}(\ Mathcal {e})上构建免费的IDEMPOTENT生成的半群$ \ MATHCAL {E} $。最近对这些有趣的物体的研究一直集中在它们的特定方面,例如最大亚组,单词问题等。2012年,格雷和鲁什库克(Ruškuc)指出,对自由产生的semogroup的结构进行了更详细的研究,对$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ mathcal {t} _n $的biorup semogroup的结构可能胜过了一个完整的转换。在2019年,与古尔德(Gould)和杨(Yang)一起,本作者表明,$ \ mathsf {ig}(\ Mathcal {e} _ {\ Mathcal {t} _n})$的单词问题是算法。在作者的最新作品中,有证据表明,对于一类广泛的生物$ \ Mathcal {e} $,该词问题的算法解决方案围绕所谓的顶点组围绕着$ \ nathsf $ \ airsf aighsf的最大亚组的某些直接产物的某些直接产物的子群体而产生。在本文中,我们确定$ \ mathcal {e} $是$ \ Mathcal {t} _n $的iDempotents的生物。

With each semigroup one can associate a partial algebra, called the biordered set, which captures important algebraic and geometric features of the structure of idempotents of that semigroup. For a biordered set $\mathcal{E}$, one can construct the free idempotent-generated semigroup over $\mathcal{E}$, $\mathsf{IG}(\mathcal{E})$, which is the free-est semigroup (in a definite categorical sense) whose biorder of idempotents is isomorphic to $\mathcal{E}$. Studies of these intriguing objects have been recently focusing on their particular aspects, such as maximal subgroups, the word problem, etc. In 2012, Gray and Ruškuc pointed out that a more detailed investigation into the structure of the free idempotent-generated semigroup over the biorder of $\mathcal{T}_n$, the full transformation monoid over an $n$-element set, might be worth pursuing. In 2019, together with Gould and Yang, the present author showed that the word problem for $\mathsf{IG}(\mathcal{E}_{\mathcal{T}_n})$ is algorithmically soluble. In a recent work by the author, it was showed that, for a wide class of biorders $\mathcal{E}$, the algorithmic solution of the word problem revolves around the so-called vertex groups, which arise as certain subgroups of direct products of pairs of maximal subgroups of $\mathsf{IG}(\mathcal{E})$. In this paper we determine these vertex groups for the case when $\mathcal{E}$ is the biorder of idempotents of $\mathcal{T}_n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源