论文标题

通过信息融合和变更检测,用于海洋航行的网络弹性

Cyber-resilience for marine navigation by information fusion and change detection

论文作者

Dagdilelis, Dimitrios, Blanke, Mogens, Andersen, Rasmus Hjorth, Galeazzi, Roberto

论文摘要

网络释放性是开发海洋船只自主导航解决方案的越来越多的关注点。本文通过具有三个边缘的棱镜来审查海洋导航的网络耐酸性:多个传感器信息融合,诊断非正态的行为和变化检测。它提出了一个两阶段的估计器,用于诊断和缓解用于沿海导航的传感器信号。开发了一种似然场方法,第一阶段提取了雷达的海岸线特征,并将其与电子导航图匹配。第二阶段的协会浮标和灯塔具有图表信息的功能。使用在海上测试中记录的真实数据结合模拟欺骗,该论文验证了及时诊断和隔离试图损害位置测量值的能力。提出了一种新方法,用于评估其一致性的高级处理,这对个人感觉输入的基本技术不可知。提出了组合的参数高斯建模和内核密度估计,并将其与使用滑动窗口的广义可能性比率更改检测器进行了比较。本文显示了在受到攻击或传感器中缺陷时,偏离标称行为的偏差和组件的隔离是如何的。

Cyber-resilience is an increasing concern in developing autonomous navigation solutions for marine vessels. This paper scrutinizes cyber-resilience properties of marine navigation through a prism with three edges: multiple sensor information fusion, diagnosis of not-normal behaviours, and change detection. It proposes a two-stage estimator for diagnosis and mitigation of sensor signals used for coastal navigation. Developing a Likelihood Field approach, a first stage extracts shoreline features from radar and matches them to the electronic navigation chart. A second stage associates buoy and beacon features from the radar with chart information. Using real data logged at sea tests combined with simulated spoofing, the paper verifies the ability to timely diagnose and isolate an attempt to compromise position measurements. A new approach is suggested for high level processing of received data to evaluate their consistency, that is agnostic to the underlying technology of the individual sensory input. A combined parametric Gaussian modelling and Kernel Density Estimation is suggested and compared with a generalized likelihood ratio change detector that uses sliding windows. The paper shows how deviations from nominal behaviour and isolation of the components is possible when under attack or when defects in sensors occur.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源