论文标题

Neurips 2021的Cogitat团队:EEG转移学习竞赛的基准

Team Cogitat at NeurIPS 2021: Benchmarks for EEG Transfer Learning Competition

论文作者

Bakas, Stylianos, Ludwig, Siegfried, Barmpas, Konstantinos, Bahri, Mehdi, Panagakis, Yannis, Laskaris, Nikolaos, Adamos, Dimitrios A., Zafeiriou, Stefanos

论文摘要

用于脑电图解码的独立于主题的深度学习模型面临着在不同的数据集,主题和记录会话中强大的协变量转移的挑战。我们解决此困难的方法是使用简单的统计技术以及具有更有代表性的训练方法,在深度学习模型的各个层面上明确调整特征分布。这与基于协方差的对准方法相似,通常在Riemannian歧管上下文中使用。本文提出的方法在Neurips会议上举办的EEG转移学习(Beetl)竞赛的2021年基准中获得了第一名。竞争的第一个任务包括睡眠阶段分类,该分类需要在未经个性化校准数据的情况下对年轻受试者进行培训的模型进行推理,以推荐多个年龄段的受试者,需要与受试者无关的模型。转移对一个或多个源电机图像数据集对主题进行训练的模型进行训练的第二任任务,以对两个目标数据集执行推断,从而为多个测试对象提供了一小部分个性化校准数据。

Building subject-independent deep learning models for EEG decoding faces the challenge of strong covariate-shift across different datasets, subjects and recording sessions. Our approach to address this difficulty is to explicitly align feature distributions at various layers of the deep learning model, using both simple statistical techniques as well as trainable methods with more representational capacity. This follows in a similar vein as covariance-based alignment methods, often used in a Riemannian manifold context. The methodology proposed herein won first place in the 2021 Benchmarks in EEG Transfer Learning (BEETL) competition, hosted at the NeurIPS conference. The first task of the competition consisted of sleep stage classification, which required the transfer of models trained on younger subjects to perform inference on multiple subjects of older age groups without personalized calibration data, requiring subject-independent models. The second task required to transfer models trained on the subjects of one or more source motor imagery datasets to perform inference on two target datasets, providing a small set of personalized calibration data for multiple test subjects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源