论文标题
通过类似人类的阅读过程提取文档级事件
Document-Level Event Extraction via Human-Like Reading Process
论文作者
论文摘要
文档级事件提取(DEE)特别棘手,因为它提出的两个挑战:散射量和多个事件。第一个挑战意味着,一个事件记录的参数可能存在于文档中的不同句子中,而第二个事件记录的参数反映了一个文档可以同时包含多个此类事件记录。在本文中,由人类的阅读认知信息提取感兴趣的信息,我们提出了一种称为HRE(人文阅读灵感的文档事件提取器)的方法,在该方法中,DEE被分解为这两个迭代阶段,粗糙的阅读和精致的阅读。具体而言,第一阶段浏览文档以检测事件的发生,第二阶段用于提取特定的事件参数。对于每个具体的事件角色,详细的阅读层次从句子到角色都可以在句子中找到参数,因此解决了散射问题问题。同时,以多轮的方式探索了粗略的阅读以发现未发现事件,因此处理了多事件问题。实验结果表明,HRE优于先前的竞争方法。
Document-level Event Extraction (DEE) is particularly tricky due to the two challenges it poses: scattering-arguments and multi-events. The first challenge means that arguments of one event record could reside in different sentences in the document, while the second one reflects one document may simultaneously contain multiple such event records. Motivated by humans' reading cognitive to extract information of interests, in this paper, we propose a method called HRE (Human Reading inspired Extractor for Document Events), where DEE is decomposed into these two iterative stages, rough reading and elaborate reading. Specifically, the first stage browses the document to detect the occurrence of events, and the second stage serves to extract specific event arguments. For each concrete event role, elaborate reading hierarchically works from sentences to characters to locate arguments across sentences, thus the scattering-arguments problem is tackled. Meanwhile, rough reading is explored in a multi-round manner to discover undetected events, thus the multi-events problem is handled. Experiment results show the superiority of HRE over prior competitive methods.