论文标题

下一代电子散射实验的流读数

Streaming readout for next generation electron scattering experiment

论文作者

Ameli, Fabrizio, Battaglieri, Marco, Berdnikov, Vladimir V., Bondì, Mariangela, Boyarinov, Sergey, Brei, Nathan, Cappelli, Laura, Celentano, Andrea, Chiarusi, Tommaso, De Vita, Raffaella, Fanelli, Cristiano, Gyurjyan, Vardan, Lawrence, David, Moran, Patrick, Musico, Paolo, Pellegrino, Carmelo, Pilloni, Alessandro, Raydo, Ben, Timmer, Carl, Ungaro, Maurizio, Vallarino, Simone

论文摘要

高强度边界的当前和未来实验预计将产生大量数据,需要收集并存储以进行离线分析。由于计算和网络技术方面的持续进展,现在可以使用新的,简化且表现优于新的方案替换标准的“触发”数据采集系统。 “流读数”(SRO)DAQ旨在用更强大和灵活的基于软件的触发器替换基于硬件的触发器,该触发器将整个检测器信息考虑有效的实时数据标记和选择。考虑到DAQ在实验中的关键作用,需要对现场测试进行验证以证明SRO性能。在本文中,我们报告了杰斐逊实验室SRO框架的梁上验证的结果。我们将不同的检测器(基于PBWO的电磁热量表和塑料闪烁体的hodoscope)暴露于Hall-D电子旋律二次束和Hall-B生产电子束,并具有越来越复杂的实验条件。通过将与SRO系统收集的数据与传统DAQ进行比较,我们证明了SRO可以按预期执行。此外,我们还提供了其优势在实施实时数据分析和重建的复杂AI支持算法方面优势的证据。

Current and future experiments at the high intensity frontier are expected to produce an enormous amount of data that needs to be collected and stored for offline analysis. Thanks to the continuous progress in computing and networking technology, it is now possible to replace the standard `triggered' data acquisition systems with a new, simplified and outperforming scheme. `Streaming readout' (SRO) DAQ aims to replace the hardware-based trigger with a much more powerful and flexible software-based one, that considers the whole detector information for efficient real-time data tagging and selection. Considering the crucial role of DAQ in an experiment, validation with on-field tests is required to demonstrate SRO performance. In this paper we report results of the on-beam validation of the Jefferson Lab SRO framework. We exposed different detectors (PbWO-based electromagnetic calorimeters and a plastic scintillator hodoscope) to the Hall-D electron-positron secondary beam and to the Hall-B production electron beam, with increasingly complex experimental conditions. By comparing the data collected with the SRO system against the traditional DAQ, we demonstrate that the SRO performs as expected. Furthermore, we provide evidence of its superiority in implementing sophisticated AI-supported algorithms for real-time data analysis and reconstruction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源