论文标题

非参数两样本测试的对抗性攻击和防御

Adversarial Attack and Defense for Non-Parametric Two-Sample Tests

论文作者

Xu, Xilie, Zhang, Jingfeng, Liu, Feng, Sugiyama, Masashi, Kankanhalli, Mohan

论文摘要

非参数两样本测试(TST)判断是否从同一分布中得出两组样本,已广泛用于关键数据的分析中。人们倾向于使用TST作为可信赖的基本工具,并且很少对其可靠性有任何疑问。本文系统地通过对抗攻击系统地揭示了非参数TST的故障模式,然后提出了相应的防御策略。首先,我们从理论上表明,对手可以在分配变化上限制,从而保证了攻击的隐形性。此外,从理论上讲,我们发现对手还可以降低TST测试能力的下限,这使我们能够迭代地最大程度地减少测试标准,以搜索对抗对。为了启用TST不合时宜的攻击,我们提出了一个合奏攻击(EA)框架,该框架共同最大程度地减少了不同类型的测试标准。其次,为了鲁棒性TST,我们提出了一种最大值优化,它可以迭代地生成对抗对来训练深核。对模拟和现实世界数据集进行的广泛实验验证了非参数TST的对抗漏洞以及我们提出的防御的有效性。源代码可从https://github.com/godxuxilie/robust-tst.git获得。

Non-parametric two-sample tests (TSTs) that judge whether two sets of samples are drawn from the same distribution, have been widely used in the analysis of critical data. People tend to employ TSTs as trusted basic tools and rarely have any doubt about their reliability. This paper systematically uncovers the failure mode of non-parametric TSTs through adversarial attacks and then proposes corresponding defense strategies. First, we theoretically show that an adversary can upper-bound the distributional shift which guarantees the attack's invisibility. Furthermore, we theoretically find that the adversary can also degrade the lower bound of a TST's test power, which enables us to iteratively minimize the test criterion in order to search for adversarial pairs. To enable TST-agnostic attacks, we propose an ensemble attack (EA) framework that jointly minimizes the different types of test criteria. Second, to robustify TSTs, we propose a max-min optimization that iteratively generates adversarial pairs to train the deep kernels. Extensive experiments on both simulated and real-world datasets validate the adversarial vulnerabilities of non-parametric TSTs and the effectiveness of our proposed defense. Source code is available at https://github.com/GodXuxilie/Robust-TST.git.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源