论文标题

陪审团学习:将不同的声音整合到机器学习模型中

Jury Learning: Integrating Dissenting Voices into Machine Learning Models

论文作者

Gordon, Mitchell L., Lam, Michelle S., Park, Joon Sung, Patel, Kayur, Hancock, Jeffrey T., Hashimoto, Tatsunori, Bernstein, Michael S.

论文摘要

机器学习(ML)算法应该学会模拟谁的标签?对于从在线评论毒性到错误信息检测到医学诊断的ML任务,社会中的不同群体可能对地面真相标签有不可调和的分歧。今天有监督的ML使用多数投票隐式地解决了这些标签分歧,这覆盖了少数群体的标签。我们介绍了陪审团学习,这是一种受监督的ML方法,该方法通过陪审团的隐喻明确解决这些分歧:确定哪些人或群体在哪个比例中决定了分类者的预测。例如,在线毒性的陪审团学习模型可能会以中心为特征女性和黑人陪审员,这些陪审员通常是在线骚扰的目标。为了实现陪审团的学习,我们贡献了一个深入的学习体系结构,该体系结构对数据集中的每个注释者进行建模,从注释者的模型中取样以填充陪审团,然后进行推断进行分类。我们的架构使陪审团能够动态调整其构图,探索反事实并形象化异议。

Whose labels should a machine learning (ML) algorithm learn to emulate? For ML tasks ranging from online comment toxicity to misinformation detection to medical diagnosis, different groups in society may have irreconcilable disagreements about ground truth labels. Supervised ML today resolves these label disagreements implicitly using majority vote, which overrides minority groups' labels. We introduce jury learning, a supervised ML approach that resolves these disagreements explicitly through the metaphor of a jury: defining which people or groups, in what proportion, determine the classifier's prediction. For example, a jury learning model for online toxicity might centrally feature women and Black jurors, who are commonly targets of online harassment. To enable jury learning, we contribute a deep learning architecture that models every annotator in a dataset, samples from annotators' models to populate the jury, then runs inference to classify. Our architecture enables juries that dynamically adapt their composition, explore counterfactuals, and visualize dissent.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源