论文标题

预算上的积极学习:相反的策略适合高预算

Active Learning on a Budget: Opposite Strategies Suit High and Low Budgets

论文作者

Hacohen, Guy, Dekel, Avihu, Weinshall, Daphna

论文摘要

研究积极的学习,我们专注于标记的示例数量(预算规模)和合适的查询策略之间的关系。我们的理论分析表明,一种让人联想到相变的行为:预算低时最好查询典型的示例,而预算较大时最好查询非代表性的示例。合并的证据表明,类似现象发生在共同的分类模型中。因此,我们提出了典型lust,这是一种适合低预算的深度积极学习策略。在对监督学习的比较实证研究中,使用各种架构和图像数据集,Typiclust在低预算制度中的表现优于所有其他活跃的学习策略。在半监督框架中使用TypicLust,性能得到了更加显着的提升。特别是,在CIFAR-10上训练的最新半监督方法,其标记为10个标记的示例,达到93.2%的精度 - 比随机选择提高了39.4%。代码可在https://github.com/avihu111/typiclust上找到。

Investigating active learning, we focus on the relation between the number of labeled examples (budget size), and suitable querying strategies. Our theoretical analysis shows a behavior reminiscent of phase transition: typical examples are best queried when the budget is low, while unrepresentative examples are best queried when the budget is large. Combined evidence shows that a similar phenomenon occurs in common classification models. Accordingly, we propose TypiClust -- a deep active learning strategy suited for low budgets. In a comparative empirical investigation of supervised learning, using a variety of architectures and image datasets, TypiClust outperforms all other active learning strategies in the low-budget regime. Using TypiClust in the semi-supervised framework, performance gets an even more significant boost. In particular, state-of-the-art semi-supervised methods trained on CIFAR-10 with 10 labeled examples selected by TypiClust, reach 93.2% accuracy -- an improvement of 39.4% over random selection. Code is available at https://github.com/avihu111/TypiClust.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源