论文标题

虚拟马尔可夫链的零法律

A Zero-One Law for Virtual Markov Chains

论文作者

Jaffe, Adam Quinn

论文摘要

虚拟马尔可夫链(VMC)是一个序列$ \ {x_n \} _ {n = 0}^{\ infty} $的马尔可夫链(MCS)在相同的概率空间上耦合在一起,以至于$ x_n $具有状态空间$ \ \ {0,1,\ ldots $ $ $ $ $ $ $ y y y; $ x_ {n+1}的$几乎可以肯定地在$ x_n $的样本路径中产生。在本文中,我们证明了$σ$ -Algebra $ \ bigCap_ {n = 0}^{\ infty}σ(x_n,x_n,x_ {n+1},\ ldots)$的琐事的精确表征。这样做的主要工具是分解定理,即VMC生成的$σ$ - 代数等于某些无数无限的独立组成型MC所产生的$σ$ -Algebra。这些成分是所谓的楼梯MC(SMC),其定义为非负整数上的非苯基马尔可夫链,仅通过保持或跳到等于当前索引的值而过渡或跳过。我们还发展了SMC理论的一些一般方面,包括与凸分析的一些经典但被低估的方面的联系。

A virtual Markov chain (VMC) is a sequence $\{X_N\}_{N=0}^{\infty}$ of Markov chains (MCs) coupled together on the same probability space such that $X_N$ has state space $\{0,1,\ldots, N\}$ and such that removing all instances of $N~+~1$ from the sample path of $X_{N+1}$ results in the sample path of $X_N$ almost surely. In this paper, we prove an exact characterization of the triviality of the $σ$-algebra $\bigcap_{N=0}^{\infty}σ(X_N,X_{N+1},\ldots)$. The main tool for doing this is a decomposition theorem that the $σ$-algebra generated by a VMC is equal to the $σ$-algebra generated by a certain countably infinite collection of independent constituent MCs. These constituents are so-called staircase MCs (SMCs), which are defined to be inhomoheneous Markov chains on the non-negative integers which transition only by holding or by jumping to a value equal to the current index. We also develop some general aspects of the theory of SMCs, including a connection with some classical but very much under-appreciated aspects of convex analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源