论文标题
通过聚类和对比对3D点云进行无监督的学习
Unsupervised Learning on 3D Point Clouds by Clustering and Contrasting
论文作者
论文摘要
从未标记或部分标记的数据中学习以减轻人类标签,仍然是3D建模中的一个具有挑战性的研究主题。沿着这条线,无监督的表示学习是无需人工干预即可自动提取特征的一个有希望的方向。本文提出了一种普遍的无监督方法,称为\ textbf {cendu},通过共同利用点级聚类和实例级对比度来执行点和全局特征的学习。具体而言,一方面,我们设计了一种期望最大化(EM),例如软聚类算法,该算法提供了本地监督,以根据最佳运输来提取局部特征。我们表明,该标准将标准的跨凝结最小化扩展到了最佳传输问题,我们使用snnhorn-knopp算法的快速变体有效地解决了最佳传输问题。对于另一个人,我们提供了一种实例级对比方法来学习全局几何形状,该方法是通过最大化一个点云的两个增强性之间的相似性来提出的。对3D对象分类和语义分割等下游应用程序的实验评估证明了我们框架的有效性,并表明它可以胜过最先进的技术。
Learning from unlabeled or partially labeled data to alleviate human labeling remains a challenging research topic in 3D modeling. Along this line, unsupervised representation learning is a promising direction to auto-extract features without human intervention. This paper proposes a general unsupervised approach, named \textbf{ConClu}, to perform the learning of point-wise and global features by jointly leveraging point-level clustering and instance-level contrasting. Specifically, for one thing, we design an Expectation-Maximization (EM) like soft clustering algorithm that provides local supervision to extract discriminating local features based on optimal transport. We show that this criterion extends standard cross-entropy minimization to an optimal transport problem, which we solve efficiently using a fast variant of the Sinkhorn-Knopp algorithm. For another, we provide an instance-level contrasting method to learn the global geometry, which is formulated by maximizing the similarity between two augmentations of one point cloud. Experimental evaluations on downstream applications such as 3D object classification and semantic segmentation demonstrate the effectiveness of our framework and show that it can outperform state-of-the-art techniques.