论文标题
DELTACT:使用致密颜色图案的基于视觉的触觉传感器
DelTact: A Vision-based Tactile Sensor Using Dense Color Pattern
论文作者
论文摘要
触觉传感是机器人完成灵巧任务的必要感知。作为一种有前途的触觉传感技术,已经开发了基于视觉的触觉传感器,以提高机器人的操纵和握力。在这里,我们提出了一种基于视觉的触觉传感器Deltact的新设计。传感器使用模块化硬件体系结构进行紧凑度,同时维持完整分辨率(798*586)和大面积(675mm2)的接触测量。此外,它基于以前的版本采用了改进的致密随机颜色模式,以实现触点变形跟踪的高精度。特别是,我们优化了颜色模式生成过程,并选择适当的模式,以便在现实世界中的实验感觉设置下与密集的光流算法进行协调。处理从原始图像获得的光流,以确定接触表面上的形状和力分布。我们还演示了从原始图像中提取接触形状和力分布的方法。实验结果表明,该传感器能够以低误差和高频(40Hz)提供触觉测量。
Tactile sensing is an essential perception for robots to complete dexterous tasks. As a promising tactile sensing technique, vision-based tactile sensors have been developed to improve robot performance in manipulation and grasping. Here we propose a new design of a vision-based tactile sensor, DelTact. The sensor uses a modular hardware architecture for compactness whilst maintaining a contact measurement of full resolution (798*586) and large area (675mm2). Moreover, it adopts an improved dense random color pattern based on the previous version to achieve high accuracy of contact deformation tracking. In particular, we optimize the color pattern generation process and select the appropriate pattern for coordinating with a dense optical flow algorithm under a real-world experimental sensory setting. The optical flow obtained from the raw image is processed to determine shape and force distribution on the contact surface. We also demonstrate the method to extract contact shape and force distribution from the raw images. Experimental results demonstrate that the sensor is capable of providing tactile measurements with low error and high frequency (40Hz).