论文标题

紧凑型量子内核基于二进制分类器

Compact quantum kernel-based binary classifier

论文作者

Blank, Carsten, da Silva, Adenilton J., de Albuquerque, Lucas P., Petruccione, Francesco, Park, Daniel K.

论文摘要

量子计算为基于内核的机器学习方法打开了令人兴奋的机会,这些方法在数据分析中具有广泛的应用。最近的工作表明,量子计算机可以通过工程化量子干扰效果来有效地构建分类器模型,以并行执行内核评估。对于这些量子机学习方法的实际应用,一个重要的问题是最大程度地减少量子电路的大小。我们提出了用于构建基于内核的二进制分类器的最简单量子电路。这是通过概括干扰电路以在量子状态的相对阶段编码数据标签的方法来实现的,并通过引入紧凑的振幅编码,该编码将两个训练数据向量编码为一个量子寄存器。与最简单的已知量子二进制分类器相比,量子位的数量减少了两个,并且相对于训练数据的数量,步骤的数量是线性减少的。以前方法中所需的两数量测量将简化为单位测量。此外,最终量子状态的纠缠量要比以前的方法较小,该方法主张我们方法的成本效益。我们的设计还提供了处理不平衡数据集的直接方法,这在许多机器学习问题中经常遇到。

Quantum computing opens exciting opportunities for kernel-based machine learning methods, which have broad applications in data analysis. Recent works show that quantum computers can efficiently construct a model of a classifier by engineering the quantum interference effect to carry out the kernel evaluation in parallel. For practical applications of these quantum machine learning methods, an important issue is to minimize the size of quantum circuits. We present the simplest quantum circuit for constructing a kernel-based binary classifier. This is achieved by generalizing the interference circuit to encode data labels in the relative phases of the quantum state and by introducing compact amplitude encoding, which encodes two training data vectors into one quantum register. When compared to the simplest known quantum binary classifier, the number of qubits is reduced by two and the number of steps is reduced linearly with respect to the number of training data. The two-qubit measurement with post-selection required in the previous method is simplified to single-qubit measurement. Furthermore, the final quantum state has a smaller amount of entanglement than that of the previous method, which advocates the cost-effectiveness of our method. Our design also provides a straightforward way to handle an imbalanced data set, which is often encountered in many machine learning problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源