论文标题

基于组的完美序列覆盖阵列的结构

A group-based structure for perfect sequence covering arrays

论文作者

Na, Jingzhou, Jedwab, Jonathan, Li, Shuxing

论文摘要

$(n,k)$ - 完美的序列覆盖具有多重$λ$的阵列,表示为psca $(n,k,λ)$,是一个多序列,其元素是序列$ $(1,2,\ dots,n)$的元素,并且共同包含每个订单的长度$ k $ k $ secepence $ k $ secepence $λ$λ$ times。主要目的是确定每对$(n,k)$的最小值$λ$,表示为$ g(n,k)$,其中psca $(n,k,λ)$存在;更一般而言,存在PSCA $(N,K,λ)$的完整值$λ$。 Yuster最近确定了$ g(n,k)$大于1的第一个已知价值,即$ g(5,3)= 2 $,并建议找到其他此类价值将具有挑战性。我们表明,使用Mathon引起的旧算法启发的递归搜索方法,$ g(6,3)= g(7,3)= 2 $。然后,我们将基于小组的结构限制在覆盖数组的完美序列上,将其限制为对称组的规定非平凡子组的独特摇摆的结合。这使我们能够确定$ g(7,4)= 2 $和$ g(7,5)\ in \ {2,3,4 \} $和$ g(8,3)\ in \ {2,3 \} $和$ g(9,3)\ in \ in \ in \ {2,3,4 \} $。我们还表明,对于每个$(n,k)\ in \ {(5,3),(6,3),(7,3),(7,4),(7,4)\} $,存在PSCA $(N,K,λ)$时,仅当$λ\ ge 2 $;当时存在PSCA $(8,3,λ)$的情况,并且仅当$λ\ ge g(8,3)$时。

An $(n,k)$-perfect sequence covering array with multiplicity $λ$, denoted PSCA$(n,k,λ)$, is a multiset whose elements are permutations of the sequence $(1,2, \dots, n)$ and which collectively contain each ordered length $k$ subsequence exactly $λ$ times. The primary objective is to determine for each pair $(n,k)$ the smallest value of $λ$, denoted $g(n,k)$, for which a PSCA$(n,k,λ)$ exists; and more generally, the complete set of values $λ$ for which a PSCA$(n,k,λ)$ exists. Yuster recently determined the first known value of $g(n,k)$ greater than 1, namely $g(5,3)=2$, and suggested that finding other such values would be challenging. We show that $g(6,3)=g(7,3)=2$, using a recursive search method inspired by an old algorithm due to Mathon. We then impose a group-based structure on a perfect sequence covering array by restricting it to be a union of distinct cosets of a prescribed nontrivial subgroup of the symmetric group $S_n$. This allows us to determine the new results that $g(7,4)=2$ and $g(7,5) \in \{2,3,4\}$ and $g(8,3) \in \{2,3\}$ and $g(9,3) \in \{2,3,4\}$. We also show that, for each $(n,k) \in \{ (5,3), (6,3), (7,3), (7,4) \}$, there exists a PSCA$(n,k,λ)$ if and only if $λ\ge 2$; and that there exists a PSCA$(8,3,λ)$ if and only if $λ\ge g(8,3)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源