论文标题
具有平均力和非线性记忆摩擦的非线性潜力的广义Langevin方程。
Generalized Langevin Equation with a Non-Linear Potential of Mean Force and Non-Linear Memory Friction From a Hybrid Projection Scheme
论文作者
论文摘要
我们引入了一种混合投影方案,该方案结合了线性MORI投影和条件Zwanzig投影技术,并使用它来推导通用的Langevin方程(GLE),以进行一般相互作用的多体系统。由此产生的GLE包括i)明确描述了在反应坐标所选空间中系统的平均力潜力(PMF),ii)一个随机术语,ii)明确取决于系统的初始状态的随机术语,以及iiii)的记忆摩擦贡献,该部分将两部分分为两部分:在伊斯特反应范围内,该部分是在属于的反应范围内的,该部分是在伊斯特反应范围内构成的,该部分是在与之相关的反应范围内,该部分是在与之构成的,该部分是在与之构成的一部分。协调但不依赖速度。因此,我们的杂种方案结合了Zwanzig和Mori投影方案的所有理想特性。非线性记忆摩擦的贡献显示与反应坐标速度与随机力之间的相关性有关。我们提出了一种数值方法,以计算GLE的所有参数,特别是从反应坐标空间中的轨迹,非线性记忆摩擦函数和随机力分布。我们将方法应用于从原子分子动力学模拟获得的水中丁烷分子的二面角动力学。在此示例中,我们证明存在非线性记忆摩擦,并且随机力表现出明显的非高斯校正。我们还提出了GLE的衍生物,用于多维反应坐标,这些坐标是基础多体系统相位空间中所有位置的一般函数。这对应于系统的粗粒程序,该过程不仅保留了正确的平衡行为,还保留了粗粒系统的正确动力学。
We introduce a hybrid projection scheme that combines linear Mori projection and conditional Zwanzig projection techniques and use it to derive a Generalized Langevin Equation (GLE) for a general interacting many-body system. The resulting GLE includes i) explicitly the potential of mean force (PMF) that describes the equilibrium distribution of the system in the chosen space of reaction coordinates, ii) a random force term that explicitly depends on the initial state of the system, and iii) a memory friction contribution that splits into two parts: a part that is linear in the past reaction-coordinate velocity and a part that is in general non-linear in the past reaction coordinates but does not depend on velocities. Our hybrid scheme thus combines all desirable properties of the Zwanzig and Mori projection schemes. The non-linear memory friction contribution is shown to be related to correlations between the reaction-coordinate velocity and the random force. We present a numerical method to compute all parameters of our GLE, in particular, the non-linear memory friction function and the random force distribution, from a trajectory in reaction coordinate space. We apply our method to the dihedral-angle dynamics of a butane molecule in water obtained from atomistic molecular dynamics simulations. For this example, we demonstrate that non-linear memory friction is present and that the random force exhibits significant non-Gaussian corrections. We also present the derivation of the GLE for multidimensional reaction coordinates that are general functions of all positions in the phase space of the underlying many-body system; this corresponds to a systematic coarse-graining procedure that preserves not only the correct equilibrium behavior but also the correct dynamics of the coarse-grained system.