论文标题
向学习用户学习以获取最佳建议
Learning from a Learning User for Optimal Recommendations
论文作者
论文摘要
在现实世界中的建议问题中,尤其是那些庞大的物品空间的问题,用户必须逐渐学会从他们关于以前消费的物品的经验中估算任何新的建议的实用性。反过来,这会影响他们与系统的交互动力学,并可能使构建在无所不知的用户假设上的先前算法无效。在本文中,我们为捕获此类“学习用户”并设计有效的系统侧学习解决方案的模型正式化,即固定的噪声活跃的椭圆形搜索(RAES),以应对此类学习用户的非平稳反馈带来的挑战。有趣的是,我们证明,随着用户学习的融合率变得更糟,RAES的遗憾会优雅地恶化,直到当用户学习无法融合时达到线性遗憾。合成数据集的实验证明了这种同时的系统用户学习问题的RAE强度。我们的研究提供了有关在建议问题中对反馈循环进行建模的新观点。
In real-world recommendation problems, especially those with a formidably large item space, users have to gradually learn to estimate the utility of any fresh recommendations from their experience about previously consumed items. This in turn affects their interaction dynamics with the system and can invalidate previous algorithms built on the omniscient user assumption. In this paper, we formalize a model to capture such "learning users" and design an efficient system-side learning solution, coined Noise-Robust Active Ellipsoid Search (RAES), to confront the challenges brought by the non-stationary feedback from such a learning user. Interestingly, we prove that the regret of RAES deteriorates gracefully as the convergence rate of user learning becomes worse, until reaching linear regret when the user's learning fails to converge. Experiments on synthetic datasets demonstrate the strength of RAES for such a contemporaneous system-user learning problem. Our study provides a novel perspective on modeling the feedback loop in recommendation problems.