论文标题
耦合的花键以稀疏曲线拟合
Coupled Splines for Sparse Curve Fitting
论文作者
论文摘要
我们将其作为一个反问题制定,构建适合一系列轮廓点的稀疏参数连续曲线模型。我们的先验是作为正规化术语合并的,该术语鼓励旋转不变性和稀疏性。我们证明,对逆问题的最佳解决方案是带有样条组件的封闭曲线。然后,我们展示如何使用B-Splines作为基础函数有效地解决任务。我们将问题公式扩展到由具有互补平滑性特性的两个不同组件制成的曲线,并使用混合花纹链解决。我们说明了模型在不同平滑度的轮廓上的性能。我们的实验结果表明,即使在测量中存在不重点的情况下,我们也可以忠实地使用几个参数重建任何一般轮廓。
We formulate as an inverse problem the construction of sparse parametric continuous curve models that fit a sequence of contour points. Our prior is incorporated as a regularization term that encourages rotation invariance and sparsity. We prove that an optimal solution to the inverse problem is a closed curve with spline components. We then show how to efficiently solve the task using B-splines as basis functions. We extend our problem formulation to curves made of two distinct components with complementary smoothness properties and solve it using hybrid splines. We illustrate the performance of our model on contours of different smoothness. Our experimental results show that we can faithfully reconstruct any general contour using few parameters, even in the presence of imprecisions in the measurements.