论文标题
在海森堡集团和渗透方面取向随机步行
Oriented Random Walk on the Heisenberg Group and Percolation
论文作者
论文摘要
结果表明,在海森堡集团上定向随机步行承认指数交叉尾巴。作为推论,我们可以在多项式体积增长的任何及传递图上得到这一点,这不是$ \ mathbb {z}的有限扩展,\ mathbb {z}^2 $,无限的渗透群集,保留参数$ p $,足够接近$ 1 $,是交换的。
It is shown that oriented random walk on the Heisenberg group admits exponential intersection tail. As a corollary we get that on any transitive graph of polynomial volume growth, which is not a finite extension of $\mathbb{Z}, \mathbb{Z}^2$, the infinite cluster of percolation with retention parameter $p$, close enough to $1$, is transient.