论文标题
工程超导Qubits以减少准粒子和充电噪声
Engineering superconducting qubits to reduce quasiparticles and charge noise
论文作者
论文摘要
识别,量化和抑制Qubits中的分解机制是朝着工程量子计算机或模拟器进行工程目标的重要步骤。超导电路在量子设计方面具有灵活性;但是,它们的性能受到准粒子的不利影响(库珀对破裂)。因此,非常需要开发与可扩展,高稳态设备兼容的准颗粒缓解策略。在这里,我们通过缩小量子尺寸,用金属盖限制并为其配备合适的准粒子陷阱来控制如何控制准粒子产生。使用翻转芯片设计,我们在超导间隙上方塑造了Qubit的电磁环境,从而抑制了准粒子中毒。我们的发现支持了以下假设:由于天线样量子线结构吸收了光子,因此库珀对在结处的破裂而占主导地位。我们实现了记录的低电荷 - 支出开关率(<1Hz)。我们的铝制设备在离散充电事件方面还显示出改进的稳定性。
Identifying, quantifying, and suppressing decoherence mechanisms in qubits are important steps towards the goal of engineering a quantum computer or simulator. Superconducting circuits offer flexibility in qubit design; however, their performance is adversely affected by quasiparticles (broken Cooper pairs). Developing a quasiparticle mitigation strategy compatible with scalable, high-coherence devices is therefore highly desirable. Here we experimentally demonstrate how to control quasiparticle generation by downsizing the qubit, capping it with a metallic cover, and equipping it with suitable quasiparticle traps. Using a flip-chip design, we shape the electromagnetic environment of the qubit above the superconducting gap, inhibiting quasiparticle poisoning. Our findings support the hypothesis that quasiparticle generation is dominated by the breaking of Cooper pairs at the junction, as a result of photon absorption by the antenna-like qubit structure. We achieve record low charge-parity switching rate (<1Hz). Our aluminium devices also display improved stability with respect to discrete charging events.