论文标题

机器学习太阳能驱动磁层对流

Machine Learning Solar Wind Driving Magnetospheric Convection in Tail Lobes

论文作者

Cao, Xin, Halekas, Jasper S., Haaland, Stein, Ruhunusiri, Suranga, Glassmeier, Karl-Heinz

论文摘要

为了定量研究全球磁尾裂片中磁层对流的驾驶机制,我们利用深尾巴中的Artemis航天器中的数据和近尾部的簇飞船的簇。先前的工作表明,在月球附近的裂片中,我们可以通过使用月球速度的Artemis测量来估计对流。在本文中,我们使用机器学习模型分析了这些数据集,以确定哪些上游因素驱动了不同磁尾区域的叶子对流,从而了解控制尾瓣动力学的机制。我们的结果表明,机器学习模型(> 0.75)的预测对流速度和测试对流速度之间的相关性比多线性回归模型的相关性要好得多(〜0.23-0.43)。系统的分析表明,IMF和磁层活性在影响全球磁尾裂片中的血浆对流方面起着重要作用。

To quantitatively study the driving mechanisms of magnetospheric convection in the magnetotail lobes on a global scale, we utilize data from the ARTEMIS spacecraft in the deep tail and the Cluster spacecraft in the near tail. Previous work demonstrated that, in the lobes near the Moon, we can estimate the convection by utilizing ARTEMIS measurements of lunar ions velocity. In this paper, we analyze these datasets with machine learning models to determine what upstream factors drive the lobe convection in different magnetotail regions and thereby understand the mechanisms that control the dynamics of the tail lobes. Our results show that the correlations between the predicted and test convection velocities for the machine learning models (>0.75) are much better than those of the multiple linear regression model (~ 0.23 - 0.43). The systematic analysis reveals that the IMF and magnetospheric activity play an important role in influencing plasma convection in the global magnetotail lobes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源