论文标题

免费的非交互性遗传内核:乔丹分解,阿尔维森扩展,内核统治

Free noncommutative hereditary kernels: Jordan decomposition, Arveson extension, kernel domination

论文作者

Ball, Joseph A., Marx, Gregory, Vinnikov, Victor

论文摘要

我们讨论了在紧凑的Hausdorff空间上进行复杂的Borel量度的(I)量化版本的(即,将一般非交换性核(标准函数标准概念的量化)分解为完全积极的非强制性核心(标准非官方kernel)的标准kernel(标准kernel)的标准kernel(标准kernel)标准kernel的一般性组合的更一般的问题。 (i)的其他特殊案例包括:分解一般操作符价值的内核作为正线性组合(并非总是可能)的线性组合,将一般有限的线性希尔伯特空间操作员分解为正线性操作员(始终可能)从$ c^$ c^$ alge $ c^*$ alge $ c^*$ alge的线性映射的线性组合(始终)的线性组合, $ c^*$ - algebra $ {\ mathcal l}({\ Mathcal y})$作为完全正面地图的线性组合,从$ {\ mathcal a} $到$ {\ sathcal l}({\ Mathcal y})$(始终可能)。 We also discuss (ii) a noncommutative kernel generalization of the Arveson extension theorem (any completely positive map $ϕ$ from a operator system ${\mathbb S}$ to an injective $C^*$-algebra ${\mathcal L}({\mathcal Y})$ can be extended to a completely positive map $ϕ_e$ from a $C^*$-algebra containing ${\mathbb S}$ to ${\mathcal L}({\mathcal Y})$), and (iii) a noncommutative kernel version of a Positivstellensatz (i.e., finding a certificate to explain why one kernel is positive at points where another given kernel is positive).

We discuss a (i) quantized version of the Jordan decomposition theorem for a complex Borel measure on a compact Hausdorff space, namely, the more general problem of decomposing a general noncommutative kernel (a quantization of the standard notion of kernel function) as a linear combination of completely positive noncommutative kernels (a quantization of the standard notion of positive definite kernel). Other special cases of (i) include: the problem of decomposing a general operator-valued kernel function as a linear combination of positive kernels (not always possible), of decomposing a general bounded linear Hilbert-space operator as a linear combination of positive linear operators (always possible), of decomposing a completely bounded linear map from a $C^*$-algebra ${\mathcal A}$ to an injective $C^*$-algebra ${\mathcal L}({\mathcal Y})$ as a linear combination of completely positive maps from ${\mathcal A}$ to ${\mathcal L}({\mathcal Y})$ (always possible). We also discuss (ii) a noncommutative kernel generalization of the Arveson extension theorem (any completely positive map $ϕ$ from a operator system ${\mathbb S}$ to an injective $C^*$-algebra ${\mathcal L}({\mathcal Y})$ can be extended to a completely positive map $ϕ_e$ from a $C^*$-algebra containing ${\mathbb S}$ to ${\mathcal L}({\mathcal Y})$), and (iii) a noncommutative kernel version of a Positivstellensatz (i.e., finding a certificate to explain why one kernel is positive at points where another given kernel is positive).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源