论文标题
西顿(Sidon)设置为间隔
Sidon sets in a union of intervals
论文作者
论文摘要
我们研究了整数间隔工会中西顿集合的最大尺寸。如果$ a \ subseteq \ mathbb {n} $是两个间隔的结合,如果$ \ left | a \ right | = n $(其中$ \ left | a \ right | $表示$ a $的基数),我们证明$ a $包含一套大小的sidon集,至少$ 0,876 \ sqrt {n} $。另一方面,通过使用小差异技术,我们建立了$ k $间隔中Sidon集合的最大尺寸的界限。
We study the maximum size of Sidon sets in unions of integers intervals. If $A\subseteq\mathbb{N}$ is the union of two intervals and if $\left| A \right|=n$ (where $\left| A \right|$ denotes the cardinality of $A$), we prove that $A$ contains a Sidon set of size at least $0, 876\sqrt{n}$. On the other hand, by using the small differences technique, we establish a bound of the maximum size of Sidon sets in the union of $k$ intervals.