论文标题

叛军阿尔玛调查:宇宙尘埃温度演变为z $ \ sim $ 7

The REBELS ALMA Survey: cosmic dust temperature evolution out to z $\sim$ 7

论文作者

Sommovigo, L., Ferrara, A., Pallottini, A., Dayal, P., Bouwens, R. J., Smit, R., da Cunha, E., De Looze, I., Bowler, R. A. A., Hodge, J., Inami, H., Oesch, P., Endsley, R., Gonzalez, V., Schouws, S., Stark, D., Stefanon, M., Aravena, M., Graziani, L., Riechers, D., Schneider, R., van der Werf, P., Algera, H., Barrufet, L., Fudamoto, Y., Hygate, A. P. S., Labbé, I., Li, Y., Nanayakkara, T., Topping, M.

论文摘要

阿尔玛(Alma)的观察结果揭示了宇宙中第一代星系中存在灰尘。但是,由于RedShift $ Z> 5 $的少数可用的FIR连续数据,尘埃温度$ t_d $仍然不受约束。这引入了高$ z $星系的几种属性中的大型不确定性,即它们的尘埃质量,红外亮度和恒星形成的晦涩。使用基于同时[CII] 158 $μm线的新方法和基础尘埃连续测量,我们在连续体中得出$ t_ d $,[CII]检测到了Alma大型项目Rebels样本中的$ Z \ 7 $星系。 We find $39\ \mathrm{K} < T_d < 58\ \mathrm{K}$, and dust masses in the narrow range $M_d = (0.9-3.6)\times 10^7 M_{\odot}$.这些结果使我们能够首次扩展到报告的$ T_D(Z)$之间的关系到电源时期。我们产生了一个新的物理模型,该模型解释了$ t_ d(z)$趋势的增加,而气体耗尽时间的减少,$ t_ {dep} = m_g/\ mathrm {sfr} $,由较高的宇宙学积聚率在早期时间引起;该假设产生$ T_D \ Propto(1+Z)^{0.4} $。该模型还解释了观察到的$ t_d $散布在固定的红移中。我们发现,在被模糊的来源中,灰尘会变得更温暖,因为较大的遮挡导致更有效的灰尘加热。对于UV-Transparent(模糊的)星系,$ T_D $仅取决于气柱密度(金属性),$ T_D \ Propto N_H^{1/6} $($ T_D \ Propto Z^{ - 1/6} $)。叛军星系平均相对透明,有效的气柱密度左右$ n_h \ simeq(0.03-1)\ times 10^{21} \ Mathrm {cm}^{ - 2} $。我们预测,其他高$ z $星系(例如MacS0416-Y1,A2744-YD4),估计$ T_D \ gg 60 $ k,是显着模糊的,低金属的系统。实际上,由于其较小的灰尘含量,金属贫困系统的$ t_d $较高,这对$ l_ {ir} $固定会导致温度较高。

ALMA observations have revealed the presence of dust in the first generations of galaxies in the Universe. However, the dust temperature $T_d$ remains mostly unconstrained due to the few available FIR continuum data at redshift $z>5$. This introduces large uncertainties in several properties of high-$z$ galaxies, namely their dust masses, infrared luminosities, and obscured fraction of star formation. Using a new method based on simultaneous [CII] 158$μ$m line and underlying dust continuum measurements, we derive $T_ d$ in the continuum and [CII] detected $z\approx 7$ galaxies in the ALMA Large Project REBELS sample. We find $39\ \mathrm{K} < T_d < 58\ \mathrm{K}$, and dust masses in the narrow range $M_d = (0.9-3.6)\times 10^7 M_{\odot}$. These results allow us to extend for the first time the reported $T_d(z)$ relation into the Epoch of Reionization. We produce a new physical model that explains the increasing $T_ d(z)$ trend with the decrease of gas depletion time, $t_{dep}=M_g/\mathrm{SFR}$, induced by the higher cosmological accretion rate at early times; this hypothesis yields $T_d \propto (1+z)^{0.4}$. The model also explains the observed $T_d$ scatter at a fixed redshift. We find that dust is warmer in obscured sources, as a larger obscuration results in more efficient dust heating. For UV-transparent (obscured) galaxies, $T_d$ only depends on the gas column density (metallicity), $T_d \propto N_H^{1/6}$ ($T_d \propto Z^{-1/6}$). REBELS galaxies are on average relatively transparent, with effective gas column densities around $N_H \simeq (0.03-1)\times 10^{21} \mathrm{cm}^{-2}$. We predict that other high-$z$ galaxies (e.g. MACS0416-Y1, A2744-YD4), with estimated $T_d \gg 60$ K, are significantly obscured, low-metallicity systems. In fact $T_d$ is higher in metal-poor systems due to their smaller dust content, which for fixed $L_{ IR}$ results in warmer temperatures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源