论文标题
使用序列到序列模型在ASR中进行误差校正
Error Correction in ASR using Sequence-to-Sequence Models
论文作者
论文摘要
自动语音识别(ASR)中编辑的后编辑需要自动纠正ASR系统产生的常见和系统错误。 ASR系统的输出在很大程度上容易出现语音和拼写错误。在本文中,我们建议使用强大的预训练的序列模型BART,BART进一步适应训练以作为剥落模型,以纠正此类类型的错误。自适应培训是在通过合成诱导错误以及通过合并现有ASR系统中的实际错误获得的增强数据集上进行的。我们还提出了一种简单的方法,可以使用单词级别对齐来取消输出。对重音语音数据的实验结果表明,我们的策略有效地纠正了大量的ASR错误,并在与竞争性基线相比时会产生改善的结果。我们还强调了在印地语语言中相关的语法误差校正任务中获得的负面结果,显示了通过我们建议的模型捕获更广泛上下文的限制。
Post-editing in Automatic Speech Recognition (ASR) entails automatically correcting common and systematic errors produced by the ASR system. The outputs of an ASR system are largely prone to phonetic and spelling errors. In this paper, we propose to use a powerful pre-trained sequence-to-sequence model, BART, further adaptively trained to serve as a denoising model, to correct errors of such types. The adaptive training is performed on an augmented dataset obtained by synthetically inducing errors as well as by incorporating actual errors from an existing ASR system. We also propose a simple approach to rescore the outputs using word level alignments. Experimental results on accented speech data demonstrate that our strategy effectively rectifies a significant number of ASR errors and produces improved WER results when compared against a competitive baseline. We also highlight a negative result obtained on the related grammatical error correction task in Hindi language showing the limitation in capturing wider context by our proposed model.