论文标题
联合加强学习用于机器人群的集体导航
Federated Reinforcement Learning for Collective Navigation of Robotic Swarms
论文作者
论文摘要
深度强化学习(DRL)的最新进步通过允许自动控制器设计促成了机器人技术。自动控制器设计是设计群体机器人系统的关键方法,与单个机器人系统相比,它需要更复杂的控制器来领导所需的集体行为。尽管基于DRL的控制器设计方法显示出其有效性,但对中央培训服务器的依赖是机器人服务器通信不稳定或有限的现实环境中的一个关键问题。我们提出了一种新型联邦学习(FL)的DRL培训策略(FLDDPG),以用于蜂群机器人应用。通过与有限的通信带宽方案下的基线策略进行比较,可以表明,FLDDPG方法使较高的鲁棒性和泛化能力进入了不同的环境和真正的机器人,而基线策略则遭受了通信带宽的限制。该结果表明,所提出的方法可以使在通信带宽有限的环境中运行的群体机器人系统受益,例如在高辐射,水下或地下环境中。
The recent advancement of Deep Reinforcement Learning (DRL) contributed to robotics by allowing automatic controller design. The automatic controller design is a crucial approach for designing swarm robotic systems, which require more complex controllers than a single robot system to lead a desired collective behaviour. Although the DRL-based controller design method showed its effectiveness, the reliance on the central training server is a critical problem in real-world environments where robot-server communication is unstable or limited. We propose a novel Federated Learning (FL) based DRL training strategy (FLDDPG) for use in swarm robotic applications. Through the comparison with baseline strategies under a limited communication bandwidth scenario, it is shown that the FLDDPG method resulted in higher robustness and generalisation ability into a different environment and real robots, while the baseline strategies suffer from the limitation of communication bandwidth. This result suggests that the proposed method can benefit swarm robotic systems operating in environments with limited communication bandwidth, e.g., in high-radiation, underwater, or subterranean environments.