论文标题
窄带石墨烯纳米骨的生长优化和设备集成
Growth optimization and device integration of narrow-bandgap graphene nanoribbons
论文作者
论文摘要
石墨烯纳米纤维(GNR)的电子,光学和磁性能可以通过基于分子前体的自下而上制造来控制其边缘结构和宽度,以通过原子精度来设计。这种方法为全碳电子设备提供了独特的平台,但需要仔细优化生长条件以匹配成功设备集成的结构要求,而GNR长度是最关键的参数。在这项工作中,我们研究了5个宽扶手椅GNR(5-agnrs)的生长,表征和设备整合,这些扶手椅GNR(5-agnrs)有望在开关设备中具有最佳的带隙作为活性材料。 5-agnr是在BR-和I取代的前体的超高真空条件下通过表面合成获得的。我们表明,使用i取代的前体的使用以及最初的前体覆盖范围的优化为平均5-agnr长度。这种显着的长度增加使我们能够将5-AGNR集成到设备中,并基于狭窄的带隙AGNR实现第一个现场效应的晶体管,该晶体管在室温下显示了切换行为。我们的研究强调,优化的生长方案可以成功地在亚纳米量表之间桥接,其中需要原子精度来控制电子特性,以及与GNR的成功设备集成相关的纳米量表的比例。
The electronic, optical and magnetic properties of graphene nanoribbons (GNRs) can be engineered by controlling their edge structure and width with atomic precision through bottom-up fabrication based on molecular precursors. This approach offers a unique platform for all-carbon electronic devices but requires careful optimization of the growth conditions to match structural requirements for successful device integration, with GNR length being the most critical parameter. In this work, we study the growth, characterization, and device integration of 5-atom wide armchair GNRs (5-AGNRs), which are expected to have an optimal band gap as active material in switching devices. 5-AGNRs are obtained via on-surface synthesis under ultra-high vacuum conditions from Br- and I-substituted precursors. We show that the use of I-substituted precursors and the optimization of the initial precursor coverage quintupled the average 5-AGNR length. This significant length increase allowed us to integrate 5-AGNRs into devices and to realize the first field-effect transistor based on narrow bandgap AGNRs that shows switching behavior at room temperature. Our study highlights that optimized growth protocols can successfully bridge between the sub-nanometer scale, where atomic precision is needed to control the electronic properties, and the scale of tens of nanometers relevant for successful device integration of GNRs.