论文标题

hahn- banach扩展及其一些变体的独特性

Uniqueness of Hahn--Banach extensions and some of its variants

论文作者

Daptari, Soumitra, Paul, Tanmoy

论文摘要

在这项研究中,我们分析了Hahn-Banach扩展的独特性的各种加强和削弱。此外,我们考虑$ y $是$ x $的理想的情况。在这种情况下,我们研究了属性 - $(u)/(su)/(hb)$和属性 - $(k-u)$用于Banach Space $ x $的子空间$ y $。我们获得了这些特性的各种新特征。我们讨论了古典Banach空间中的各种示例,上面提到的特性得到满足并失败。据观察,$ C_0 $中的超平面具有属性 - $(Hb)$,并且仅当它是$ m $ -summand时。通过识别$(x \ wideHat {\ otimes}_πy)^*\ cong \ mathcal {l}(x,y^*)$,将$ x,z $作为$ z $的子空间作为$ z $的子空间,我们观察到了$ \ n preseries in $ \ n prionger of und ofers of ymatercal propers ymater { $(x \ wideHat {\ otimes}_πz)$如果$ y $具有属性 - $(su)$ in $ z $。据观察,有限的尺寸子空间$ y $的$ c_0 $具有属性 - $ c_0 $中的$(k-u)$,如果$ y $是理想的,则$ y^*$是$ k $ - stictlictly coNvex cosvex subspace $ \ ell_1 $ \ ell_1 $ \ ell_1 $ \ ell_1 $ g ell_1 $。

In this study, we analyze the various strengthening and weakening of the uniqueness of the Hahn--Banach extension. In addition, we consider the case in which $Y$ is an ideal of $X$. In this context, we study the property-$(U)/ (SU)/ (HB)$ and property-$(k-U)$ for a subspace $Y$ of a Banach space $X$. We obtain various new characterizations of these properties. We discuss various examples in the classical Banach spaces, where the aforementioned properties are satisfied and where they fail. It is observed that a hyperplane in $c_0$ has property-$(HB)$ if and only if it is an $M$-summand. Considering $X, Z$ as Banach spaces and $Y$ as a subspace of $Z$, by identifying $(X\widehat{\otimes}_πY)^*\cong \mathcal{L}(X,Y^*)$, we observe that an isometry in $\mathcal{L}(X,Y^*)$ has a unique norm-preserving extension over $(X\widehat{\otimes}_πZ)$ if $Y$ has property-$(SU)$ in $Z$. It is observed that a finite dimensional subspace $Y$ of $c_0$ has property-$(k-U)$ in $c_0$, and if $Y$ is an ideal, then $Y^*$ is a $k$-strictly convex subspace of $\ell_1$ for some natural $k$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源