论文标题

为COVID-19大流行设计社会距离政策:概率模型预测控制方法

Designing Social Distancing Policies for the COVID-19 Pandemic: A probabilistic model predictive control approach

论文作者

Armaou, Antonis, Katch, Bryce, Russo, Lucia, Siettos, Constantinos

论文摘要

COVID-19大流行的有效控制是当今最具挑战性的问题之一。最佳控制政策的设计使各种社会,政治,经济和流行病学因素感到困惑。在这里,基于在大流行第一波中,意大利伦巴第地区的流行病学数据在意大利伦巴第地区的流行病学数据中经历了欧洲最大,最毁灭性的爆发之一,我们解决了一种概率模型预测控制方法(PMPC)的模型方法,用于建模以及对散布的社交景点的系统性研究,以进行第一次散布的社交场景。根据对隔室模型的模拟进行了评估,该模拟的性能是为了量化人口无症状案件水平的不确定性的模拟,以及各种活动中社会疏远的协同作用,以及公众的宣传运动促使人们采取谨慎行为采取谨慎行为以减少疾病传播的风险。 PMPC方案考虑了社会混合效应,即各种活动在疾病潜在传播中的影响。提出的方法证明了PMPC方法在解决Covid-19传播和实施公共放松政策方面的实用性。

The effective control of the COVID-19 pandemic is one the most challenging issues of nowadays. The design of optimal control policies is perplexed from a variety of social, political, economical and epidemiological factors. Here, based on epidemiological data reported in recent studies for the Italian region of Lombardy, which experienced one of the largest and most devastating outbreaks in Europe during the first wave of the pandemic, we address a probabilistic model predictive control (PMPC) approach for the modelling and the systematic study of what if scenarios of the social distancing in a retrospective analysis for the first wave of the pandemic in Lombardy. The performance of the proposed PMPC scheme was assessed based on simulations of a compartmental model that was developed to quantify the uncertainty in the level of the asymptomatic cases in the population, and the synergistic effect of social distancing in various activities, and public awareness campaign prompting people to adopt cautious behaviors to reduce the risk of disease transmission. The PMPC scheme takes into account the social mixing effect, i.e. the effect of the various activities in the potential transmission of the disease. The proposed approach demonstrates the utility of a PMPC approach in addressing COVID-19 transmission and implementing public relaxation policies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源