论文标题

拓扑先验领域

Topological Transcendental Fields

论文作者

Chalebgwa, Taboka Prince, Morris, Sidney A.

论文摘要

本文启动了对所有复数数字的拓扑字段$ \ cc $的子场的拓扑先验领域$ \ ff $的研究,因此$ \ ff $仅由合理数字和一组非空的先验数字组成。 $ \ ff $,它以$ \ cc $的子空间继承的拓扑是一个拓扑字段。每个拓扑先验场都是一个可分离的零维空间,而代数为$ \ qq(t)$,这是理性数字的扩展,将有理数字段的扩展通过一组$ t $ t $ the Trabordental Numbers。事实证明,精确存在$ 2^{\ aleph_0} $可计数的无限拓扑超验域,并且每个字段都是同型与常规拓扑合理数字的空间$ \ qq $。还表明,有一类$ 2^{2^{\ Aleph_0}} $的$ \ qq(t)$的拓扑超验字段的$ 2^{\ aleph_0}} $,其中$ t $ a $ t $一组liouville编号,其中两个是同源的。

This article initiates the study of topological transcendental fields $\FF$ which are subfields of the topological field $\CC$ of all complex numbers such that $\FF$ consists of only rational numbers and a nonempty set of transcendental numbers. $\FF$, with the topology it inherits as a subspace of $\CC$, is a topological field. Each topological transcendental field is a separable metrizable zero-dimensional space and algebraically is $\QQ(T)$, the extension of the field of rational numbers by a set $T$ of transcendental numbers. It is proved that there exist precisely $2^{\aleph_0}$ countably infinite topological transcendental fields and each is homeomorphic to the space $\QQ$ of rational numbers with its usual topology. It is also shown that there is a class of $2^{2^{\aleph_0} }$ of topological transcendental fields of the form $\QQ(T)$ with $T$ a set of Liouville numbers, no two of which are homeomorphic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源