论文标题
Adaann:概率密度近似的自适应退火调度程序
AdaAnn: Adaptive Annealing Scheduler for Probability Density Approximation
论文作者
论文摘要
近似概率分布可能是一项具有挑战性的任务,尤其是当它们在高几何复杂性区域或表现出多种模式的区域中得到支持时。退火可用于促进此任务,该任务通常与恒定的先验选择的相反温度相结合。但是,由于无法适应退火密度的平稳变化可以通过更大的增量来很好地处理,因此使用恒定增量限制了计算效率。我们介绍了Adaann,这是一种自适应退火调度程序,它会根据两个分布之间的kullback-leibler差异的预期变化自动调整温度增量,并具有足够接近的退火温度。 Adaann易于实现,可以集成到现有的采样方法中,例如变异推理和马尔可夫链蒙特卡洛等归一化流量。我们证明了Adaann调度程序的计算效率,用于在许多示例上进行归一化流的变异推理,包括动态系统的密度近似和参数估计。
Approximating probability distributions can be a challenging task, particularly when they are supported over regions of high geometrical complexity or exhibit multiple modes. Annealing can be used to facilitate this task which is often combined with constant a priori selected increments in inverse temperature. However, using constant increments limit the computational efficiency due to the inability to adapt to situations where smooth changes in the annealed density could be handled equally well with larger increments. We introduce AdaAnn, an adaptive annealing scheduler that automatically adjusts the temperature increments based on the expected change in the Kullback-Leibler divergence between two distributions with a sufficiently close annealing temperature. AdaAnn is easy to implement and can be integrated into existing sampling approaches such as normalizing flows for variational inference and Markov chain Monte Carlo. We demonstrate the computational efficiency of the AdaAnn scheduler for variational inference with normalizing flows on a number of examples, including density approximation and parameter estimation for dynamical systems.