论文标题

对Skyrmion Hall角度的相称作用,并阻力在二维周期性基材上操纵天空

Commensuration Effects on Skyrmion Hall Angle and Drag for Manipulation of Skyrmions on Two-Dimensional Periodic Substrates

论文作者

Reichhardt, C., Reichhardt, C. J. O.

论文摘要

我们检查了一个单独驱动的天空的动力学,当时我们在耦合到2D周期基材的背景晶格中移动,因为我们改变了天空数量与跨跨度和不一致条件的固定位点的数量的比例。随着天空密度的增加,Skyrmion Hall角度是非单调的,在相称的状态下降至低或零值,并在不一致的状态下升至增强的值。在相称的情况下,驱动的天空通过固定阵列的对称方向引导,并表现出增加的速度。速度波动在填充物处具有狭窄的带签名,在Skyrmion Hall角度为零,而对于不相称的填充物,Skyrmion运动是无序的,并且速度噪声是宽带的。在相应的条件下,出现多步渗透过渡,在低驱动器下,Skyrmion Hall角度为零,但在较高的驱动器下变为有限,而不超压力的填充物具有单个下达的过渡。随着马格努斯力的增加,相称的速度峰越过倾角,并且出现了新的方向锁定角度。在大马格努斯力量,尤其是在相称的填充物时,由于马格努斯诱导的速度与驱动方向的比对,因此可以发生速度提升,而速度提升比所施加的驱动器更快。当天空被迫沿周期性固定阵列的非对称方向移动时,增加马格努斯力可以产生增强的固定机制。这与随机固定的系统相反,在随机固定的系统中,增加马格努斯力通常会降低固定效果。我们为方形和三角形底物证明了这些动力学,并在一系列动态相图中绘制出不同的策略,以填充分数,固定力和马格努斯力的强度。

We examine the dynamics of an individually driven skyrmion moving through a background lattice of skyrmions coupled to a 2D periodic substrate as we vary the ratio of the number of skyrmions to the number of pinning sites across commensurate and incommensurate conditions. As the skyrmion density increases, the skyrmion Hall angle is nonmonotonic, dropping to low or zero values in commensurate states and rising to an enhanced value in incommensurate states. Under commensuration, the driven skyrmion is channeled by a symmetry direction of the pinning array and exhibits an increased velocity. The velocity fluctuations have a narrow band signature at fillings where the skyrmion Hall angle is zero, while for incommensurate fillings, the skyrmion motion is disordered and the velocity noise is broad band. Under commensurate conditions, multi-step depinning transitions appear and the skyrmion Hall angle is zero at low drives but becomes finite at higher drives, while incommensurate fillings have a single depinning transition. As the Magnus force increases, commensuration velocity peaks cross over to dips, and new directional locking angles appear. At large Magnus forces, particularly at commensurate fillings, a velocity boost can occur in which the skyrmion moves faster than the applied drive due to the alignment of the Magnus-induced velocity with the driving direction. Increase the Magnus force can produce regimes of enhanced pinning when the skyrmion is forced to move along a non-symmetry direction of the periodic pinning array. This is in contrast to systems with random pinning, where increasing the Magnus force generally reduces the pinning effect. We demonstrate these dynamics for both square and triangular substrates, and map out the different regimes as a function of filling fraction, pinning force, and the strength of the Magnus force in a series of dynamic phase diagrams.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源