论文标题

深度残余学习实施变态

A deep residual learning implementation of Metamorphosis

论文作者

Maillard, Matthis, François, Anton, Glaunès, Joan, Bloch, Isabelle, Gori, Pietro

论文摘要

在医学成像中,大多数图像登记方法隐含地假设源图像和目标图像(即差异性)之间的对应关系一对一。但是,在处理病理医学图像(例如,存在肿瘤,病变等)时,不一定是这种情况。为了应对这个问题,已经提出了变形模型。它可以修改图像的形状和外观,以处理几何和拓扑差异。但是,到目前为止,高计算时间和负载妨碍了其应用程序。在这里,我们提出了对变态的深度残留学习实施,从而大大减少了推断时的计算时间。此外,我们还表明,所提出的框架可以轻松地集成有关拓扑变化(例如分割掩码)的先验知识,这些框架可以充当空间正则化,以正确地解散外观和形状变化。我们在Brats 2021数据集上测试我们的方法,这表明它在与脑肿瘤的图像对齐中的当前最新方法的表现要优于当前的最新方法。

In medical imaging, most of the image registration methods implicitly assume a one-to-one correspondence between the source and target images (i.e., diffeomorphism). However, this is not necessarily the case when dealing with pathological medical images (e.g., presence of a tumor, lesion, etc.). To cope with this issue, the Metamorphosis model has been proposed. It modifies both the shape and the appearance of an image to deal with the geometrical and topological differences. However, the high computational time and load have hampered its applications so far. Here, we propose a deep residual learning implementation of Metamorphosis that drastically reduces the computational time at inference. Furthermore, we also show that the proposed framework can easily integrate prior knowledge of the localization of topological changes (e.g., segmentation masks) that can act as spatial regularization to correctly disentangle appearance and shape changes. We test our method on the BraTS 2021 dataset, showing that it outperforms current state-of-the-art methods in the alignment of images with brain tumors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源