论文标题
在实现振幅约束矢量高斯窃听通道的能力上
On the Capacity Achieving Input of Amplitude Constrained Vector Gaussian Wiretap Channel
论文作者
论文摘要
本文研究了峰值限制下的$ n $二维高斯窃听通道的保密容量。这项工作确定了最大的峰值约束$ \ bar {\ mathsf {r}} _ n $,以使输入分布在单个球体上均匀分布是最佳的;该制度称为小振幅制度。 $ \ bar {\ mathsf {r}} _ n $的渐近造成$ n $ to to Infinity的渐近是完全表征了两个接收器的噪声方差的函数。此外,秘密容量的表征还以适合计算的形式进行表征。此外,还提供了几个数值示例,例如,在小幅度稳定性方面实现分布的秘密容量的例子。
This paper studies secrecy-capacity of an $n$-dimensional Gaussian wiretap channel under the peak-power constraint. This work determines the largest peak-power constraint $\bar{\mathsf{R}}_n$ such that an input distribution uniformly distributed on a single sphere is optimal; this regime is termed the small-amplitude regime. The asymptotic of $\bar{\mathsf{R}}_n$ as $n$ goes to infinity is completely characterized as a function of noise variance at both receivers. Moreover, the secrecy-capacity is also characterized in a form amenable for computation. Furthermore, several numerical examples are provided, such as the example of the secrecy-capacity achieving distribution outside of the small amplitude regime.