论文标题

Q-Gorenstein曲折接触歧管,Ehrhart多项式和Chen-Ruan共同体的接触不变

Contact invariants of Q-Gorenstein toric contact manifolds, the Ehrhart polynomial and Chen-Ruan cohomology

论文作者

Abreu, Miguel, Macarini, Leonardo, Moreira, Miguel

论文摘要

Q-Gorenstein Etric接触歧管提供了与Torsion First Chern类的接触歧管的有趣示例。它们完全由某些理性凸的多面体(称为感谢您的图表)确定,并且既是曲折孤立的奇点的链接,又作为单调旋转旋转符号符号孔的链接。在本文中,我们展示了Q-Gorenstein曲折触点的圆柱触点同源性不变性如何与(i)ehrhart(quasi-)多项式图表相关; (ii)任何毛por虫的旋晶曲线分辨率的Chen-Ruan共同体,其相应的旋转孤立的奇异性; (iii)任何单调的复型旋转式Orbifold碱基的陈兰共同体,该基础通过前质化引起它。

Q-Gorenstein toric contact manifolds provide an interesting class of examples of contact manifolds with torsion first Chern class. They are completely determined by certain rational convex polytopes, called toric diagrams, and arise both as links of toric isolated singularities and as prequantizations of monotone toric symplectic orbifolds. In this paper we show how the cylindrical contact homology invariants of a Q-Gorenstein toric contact manifold are related to (i) the Ehrhart (quasi-)polynomial of its toric diagram; (ii) the Chen-Ruan cohomology of any crepant toric orbifold resolution of its corresponding toric isolated singularity; (iii) the Chen-Ruan cohomology of any monotone toric symplectic orbifold base that gives rise to it through prequantization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源