论文标题
关于图形代数的量子镜头空间的分类和描述
On the classification and description of quantum lens spaces as graph algebras
论文作者
论文摘要
我们研究量子镜头空间,$ c(l_q^{2n+1}(r; \ suespline {m}))$,由brzezińskińskińskiński-szymański作为图形$ c^*$ - 代数。我们将$ c(l_q^{2n+1}(r; \ usepline {m}))$的新描述作为图形$ c^*$ - 代数 - 在Brzezińskiński-szymański的原始论文中修改了错误。此外,对于$ n \ leq 3 $,我们给出了一个数字理论不变的,而一个重量除了一个重量与代理群体$ r $的订单相比。这建立在埃勒斯(Eilers),Restorff,Ruiz和Sørensen的工作上。
We investigate quantum lens spaces, $C(L_q^{2n+1}(r;\underline{m}))$, introduced by Brzeziński-Szymański as graph $C^*$-algebras. We give a new description of $C(L_q^{2n+1}(r;\underline{m}))$ as graph $C^*$-algebras amending an error in the original paper by Brzeziński-Szymański. Furthermore, for $n\leq 3$, we give a number-theoretic invariant, when all but one weight are coprime to the order of the acting group $r$. This builds upon the work of Eilers, Restorff, Ruiz and Sørensen.