论文标题

通过进化策略加速数字双网络优化的深度强化学习

Accelerating Deep Reinforcement Learning for Digital Twin Network Optimization with Evolutionary Strategies

论文作者

Güemes-Palau, Carlos, Almasan, Paul, Xiao, Shihan, Cheng, Xiangle, Shi, Xiang, Barlet-Ros, Pere, Cabellos-Aparicio, Albert

论文摘要

新兴网络应用程序的最新增长(例如卫星网络,车辆网络)正在增加管理现代通信网络的复杂性。结果,社区提出了数字双网络(DTN)作为有效网络管理的关键推动者。网络运营商可以利用DTN执行不同的优化任务(例如,流量工程,网络计划)。当应用于解决网络优化问题时,深度加强学习(DRL)显示出高性能。在DTN的背景下,可以利用DRL来解决优化问题,而无需直接影响现实世界的网络行为。但是,DRL随着问题的大小和复杂性而缩小范围很差。在本文中,我们探讨了进化策略(ES)来培训DRL代理以解决路由优化问题的使用。实验结果表明,NSFNET和GEANT2拓扑的ES分别达到了128和6的训练时间。

The recent growth of emergent network applications (e.g., satellite networks, vehicular networks) is increasing the complexity of managing modern communication networks. As a result, the community proposed the Digital Twin Networks (DTN) as a key enabler of efficient network management. Network operators can leverage the DTN to perform different optimization tasks (e.g., Traffic Engineering, Network Planning). Deep Reinforcement Learning (DRL) showed a high performance when applied to solve network optimization problems. In the context of DTN, DRL can be leveraged to solve optimization problems without directly impacting the real-world network behavior. However, DRL scales poorly with the problem size and complexity. In this paper, we explore the use of Evolutionary Strategies (ES) to train DRL agents for solving a routing optimization problem. The experimental results show that ES achieved a training time speed-up of 128 and 6 for the NSFNET and GEANT2 topologies respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源