论文标题

通过深度学习解开多个散射:应用于电子衍射模式的应变映射

Disentangling multiple scattering with deep learning: application to strain mapping from electron diffraction patterns

论文作者

Munshi, Joydeep, Rakowski, Alexander, Savitzky, Benjamin H, Zeltmann, Steven E, Ciston, Jim, Henderson, Matthew, Cholia, Shreyas, Minor, Andrew M, Chan, Maria KY, Ophus, Colin

论文摘要

实施快速,健壮和完全自动化的管道,以确定晶体结构的确定和晶体材料的潜在应变图对许多技术应用非常重要。扫描电子Nanodiffraction提供了一个程序,可识别和收集良好的空间分辨率,以识别和收集应变图。但是,该技术的应用受到限制,尤其是在电子束可以经历多个散射的厚样品中,这引入了信号非线性。深度学习方法有可能反转这些复杂的信号,但是以前的实现通常仅在特定的晶体系统或晶体结构的一小部分和显微镜参数相位空间上进行训练。在这项研究中,我们实施了称为FCU-NET的傅立叶空间,复杂值的深神经网络,以将高度非线性电子衍射模式倒入相应的定量结构因子图像中。我们使用200,000多种独特的模拟动力衍射模式训练了FCU-NET,其中包括许多不同的晶体结构组合,方向,厚度,显微镜参数和常见的实验伪影。我们针对模拟和实验4D-STEM衍射数据集评估了训练有素的FCU-NET模型,在该数据集中,它基本上超过了常规分析方法。我们的模拟衍射模式库,FCU-NET的实现以及训练有素的模型权重可以在开源存储库中免费获得,并且可以适应许多不同的衍射测量问题。

Implementation of a fast, robust, and fully-automated pipeline for crystal structure determination and underlying strain mapping for crystalline materials is important for many technological applications. Scanning electron nanodiffraction offers a procedure for identifying and collecting strain maps with good accuracy and high spatial resolutions. However, the application of this technique is limited, particularly in thick samples where the electron beam can undergo multiple scattering, which introduces signal nonlinearities. Deep learning methods have the potential to invert these complex signals, but previous implementations are often trained only on specific crystal systems or a small subset of the crystal structure and microscope parameter phase space. In this study, we implement a Fourier space, complex-valued deep neural network called FCU-Net, to invert highly nonlinear electron diffraction patterns into the corresponding quantitative structure factor images. We trained the FCU-Net using over 200,000 unique simulated dynamical diffraction patterns which include many different combinations of crystal structures, orientations, thicknesses, microscope parameters, and common experimental artifacts. We evaluated the trained FCU-Net model against simulated and experimental 4D-STEM diffraction datasets, where it substantially out-performs conventional analysis methods. Our simulated diffraction pattern library, implementation of FCU-Net, and trained model weights are freely available in open source repositories, and can be adapted to many different diffraction measurement problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源