论文标题

重建$ su(n)_K $的编织子类别

Reconstructing Braided Subcategories of $SU(N)_k$

论文作者

Feng, Zhaobidan, Rowell, Eric C., Ming, Shuang

论文摘要

Ocneanu刚度意味着有很多(编织)的融合类别有一组给定的融合规则。尽管没有方法可以确定所有此类类别的等效性,但有一些情况可以。例如,Kazhdan和Wenzl向$ SU(N)_K $的所有融合类别均具有同构。在本文中,我们将其结果扩展到有关编织融合类别的声明,并为$ su(n)_k $的某些子类别获得类似的结果。

Ocneanu rigidity implies that there are finitely many (braided) fusion categories with a given set of fusion rules. While there is no method for determining all such categories up to equivalence, there are a few cases for which can. For example, Kazhdan and Wenzl described all fusion categories with fusion rules isomorphic to those of $SU(N)_k$. In this paper we extend their results to a statement about braided fusion categories, and obtain similar results for certain subcategories of $SU(N)_k$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源