论文标题

用于精确迭代双能CT算法的金属伪影方案

A Metal Artifact Reduction Scheme For Accurate Iterative Dual-Energy CT Algorithms

论文作者

Ge, Tao, Medrano, Maria, Liao, Rui, Williamson, Jeffrey F., Politte, David G., Whiting, Bruce R., O'Sullivan, Joseph A.

论文摘要

CT图像已用于生成二十多年来的放射治疗治疗计划。双能CT(DECT)在估计用于治疗计划中使用的电子密度或质子停止功率图方面表现出很高的精度。但是,金属植入物的存在在重建的图像中引入了严重的条纹伪影,从而影响诊断准确性和治疗性能。为了减少DECT的金属伪像,我们为迭代DECT算法引入了金属 - 艺术还原方案。估计值代替每次迭代中的损坏数据。我们利用与图像域分解组成的归一化金属减少(NMAR)来初始化算法并加快收敛性。完全3D联合统计DECT算法,双能交替的最小化(DEAM),并在拟议方案中测试了在Philips Brilliance Big Big Bore Scanner上获得的实验和临床螺旋数据。我们将DEAM与所提出的方法与原始DEAM和供应商的重建进行了比较,并没有金属 - 骨质植入物(O-MAR)的金属绘制减少。可视化和定量分析表明,使用该方法的DEAM在减少金属物体引起的条纹伪影方面具有最佳性能。

CT images have been used to generate radiation therapy treatment plans for more than two decades. Dual-energy CT (DECT) has shown high accuracy in estimating electronic density or proton stopping-power maps used in treatment planning. However, the presence of metal implants introduces severe streaking artifacts in the reconstructed images, affecting the diagnostic accuracy and treatment performance. In order to reduce the metal artifacts in DECT, we introduce a metal-artifact reduction scheme for iterative DECT algorithms. An estimate is substituted for the corrupt data in each iteration. We utilize normalized metal-artifact reduction (NMAR) composed with image-domain decomposition to initialize the algorithm and speed up the convergence. A fully 3D joint statistical DECT algorithm, dual-energy alternating minimization (DEAM), with the proposed scheme is tested on experimental and clinical helical data acquired on a Philips Brilliance Big Bore scanner. We compared DEAM with the proposed method to the original DEAM and vendor reconstructions with and without metal-artifact reduction for orthopedic implants (O-MAR). The visualization and quantitative analysis show that DEAM with the proposed method has the best performance in reducing streaking artifacts caused by metallic objects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源