论文标题

用电子健康记录识别痴呆症亚型

Identifying Dementia Subtypes with Electronic Health Records

论文作者

Kumar, Sayantan, Abrams, Zachary, Schindler, Suzanne, Ghoshal, Nupur, Payne, Philip

论文摘要

痴呆症的特征是记忆力下降和思维,这足以损害日常生活活动中的功能。在痴呆症专科诊所中看到的患者是高度异质的,并且以不同的速度进展的各种症状。在这项工作中,我们使用了无监督的数据驱动的K-均值聚类方法对临床痴呆评分(CDR)评分的成分得分(CDR)评分来识别痴呆症亚型,并使用差距统计量来识别最佳的簇数。我们的目标是根据其认知表现来表征所鉴定的痴呆症亚型,并分析亚型之间的患者过渡与疾病进展如何相关。我们的结果表明两者间的可变性,这表明即使使用相同的CDR和(ii)subbtype变异性,特定成分得分的痴呆症亚型之间的可变性,这表明特定痴呆症亚型中6个成分分数的变化。我们观察到,代表非常温和痴呆的个体(CDR 0.5)的痴呆症亚型的过渡速率差异很大。未来的工作包括测试我们提出的管道在其他数据集上的普遍性,并使用大量的EHR数据来估算痴呆症亚型之间的概率估计,从认知概况和疾病进展方面。

Dementia is characterized by a decline in memory and thinking that is significant enough to impair function in activities of daily living. Patients seen in dementia specialty clinics are highly heterogeneous with a variety of different symptoms that progress at different rates. In this work, we used an unsupervised data-driven K-Means clustering approach on the component scores of the Clinical Dementia Rating (CDR) score to identify dementia subtypes and used the gap-statistic to identify the optimal number of clusters. Our goal was to characterize the identified dementia subtypes in terms of their cognitive performance and analyze how patient transitions between subtypes relate to disease progression. Our results indicate both inter-subtype variability, which indicates the variability amongst dementia subtypes for a particular component score even with the same CDR and (ii) intra-subtype variability, which indicates the variation in the 6 component scores within a particular dementia subtype. We observed that dementia subtypes that represented individuals with very mild dementia (CDR 0.5) had widely varying rates of transition to other subtypes. Future work includes testing the generalizability of our proposed pipeline on additional datasets, and using a larger volume of EHR data to estimate probabilistic estimates of the variability between dementia subtypes both in terms of cognitive profile and disease progression.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源